jsx/src/jsx_decoder.erl

861 lines
32 KiB
Erlang
Raw Normal View History

%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_decoder).
-export([decoder/1]).
-spec decoder(Opts::jsx:opts()) -> jsx:decoder().
decoder(Opts) ->
fun(JSON) -> start(JSON, [], [], jsx_utils:parse_opts(Opts)) end.
-include("../include/jsx_opts.hrl").
%% whitespace
-define(space, 16#20).
-define(tab, 16#09).
-define(cr, 16#0D).
-define(newline, 16#0A).
%% object delimiters
-define(start_object, 16#7B).
-define(end_object, 16#7D).
%% array delimiters
-define(start_array, 16#5B).
-define(end_array, 16#5D).
%% kv seperator
-define(comma, 16#2C).
-define(quote, 16#22).
-define(colon, 16#3A).
%% string escape sequences
-define(escape, 16#5C).
-define(rsolidus, 16#5C).
-define(solidus, 16#2F).
-define(formfeed, 16#0C).
-define(backspace, 16#08).
-define(unicode, 16#75).
%% math
-define(zero, 16#30).
-define(decimalpoint, 16#2E).
-define(negative, 16#2D).
-define(positive, 16#2B).
%% some useful guards
-define(is_hex(Symbol),
(Symbol >= $a andalso Symbol =< $z); (Symbol >= $A andalso Symbol =< $Z);
(Symbol >= $0 andalso Symbol =< $9)
).
-define(is_nonzero(Symbol),
Symbol >= $1 andalso Symbol =< $9
).
-define(is_noncontrol(Symbol),
(Symbol >= ?space)
).
-define(is_whitespace(Symbol),
Symbol =:= ?space; Symbol =:= ?tab; Symbol =:= ?cr; Symbol =:= ?newline
).
%% error, incomplete and event macros
-ifndef(error).
-define(error(Args),
erlang:error(badarg, Args)
).
-endif.
-ifndef(incomplete).
-define(incomplete(State, Rest, Out, Stack, Opts),
{incomplete, fun(Stream) when is_binary(Stream) ->
State(<<Rest/binary, Stream/binary>>, Out, Stack, Opts)
; (end_stream) ->
case State(<<Rest/binary, <<" ">>/binary>>,
Out,
Stack,
Opts#opts{explicit_end=false}) of
{incomplete, _} -> ?error([Rest, Out, Stack, Opts])
; {ok, Events} -> {ok, Events}
end
end
}
).
-endif.
-ifndef(event).
-define(event(Event, State, Rest, Out, Stack, Opts),
State(Rest, Event ++ Out, Stack, Opts)
).
-endif.
-define(new_seq(), []).
-define(new_seq(C), [C]).
-define(acc_seq(Seq, C), [C] ++ Seq).
-define(end_seq(Seq), unicode:characters_to_binary(lists:reverse(Seq))).
start(<<?start_object, Rest/binary>>, Out, Stack, Opts) ->
?event([start_object], object, Rest, Out, [key|Stack], Opts);
start(<<?start_array, Rest/binary>>, Out, Stack, Opts) ->
?event([start_array], array, Rest, Out, [array|Stack], Opts);
start(<<?quote, Rest/binary>>, Out, Stack, Opts) ->
string(Rest, Out, [?new_seq()|Stack], Opts);
start(<<$t, Rest/binary>>, Out, Stack, Opts) ->
tr(Rest, Out, Stack, Opts);
start(<<$f, Rest/binary>>, Out, Stack, Opts) ->
fa(Rest, Out, Stack, Opts);
start(<<$n, Rest/binary>>, Out, Stack, Opts) ->
nu(Rest, Out, Stack, Opts);
start(<<?negative, Rest/binary>>, Out, Stack, Opts) ->
negative(Rest, Out, [?new_seq($-)|Stack], Opts);
start(<<?zero, Rest/binary>>, Out, Stack, Opts) ->
zero(Rest, Out, [?new_seq($0)|Stack], Opts);
start(<<S/utf8, Rest/binary>>, Out, Stack, Opts) when ?is_nonzero(S) ->
integer(Rest, Out, [?new_seq(S)|Stack], Opts);
start(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_whitespace(S) ->
start(Rest, Out, Stack, Opts);
start(<<>>, Out, Stack, Opts) ->
?incomplete(start, <<>>, Out, Stack, Opts);
start(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
object(<<?quote, Rest/binary>>, Out, Stack, Opts) ->
string(Rest, Out, [?new_seq()|Stack], Opts);
object(<<?end_object, Rest/binary>>, Out, [key|Stack], Opts) ->
?event([end_object], maybe_done, Rest, Out, Stack, Opts);
object(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_whitespace(S) ->
object(Rest, Out, Stack, Opts);
object(<<>>, Out, Stack, Opts) ->
?incomplete(object, <<>>, Out, Stack, Opts);
object(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
array(<<?quote, Rest/binary>>, Out, Stack, Opts) ->
string(Rest, Out, [?new_seq()|Stack], Opts);
array(<<$t, Rest/binary>>, Out, Stack, Opts) ->
tr(Rest, Out, Stack, Opts);
array(<<$f, Rest/binary>>, Out, Stack, Opts) ->
fa(Rest, Out, Stack, Opts);
array(<<$n, Rest/binary>>, Out, Stack, Opts) ->
nu(Rest, Out, Stack, Opts);
array(<<?negative, Rest/binary>>, Out, Stack, Opts) ->
negative(Rest, Out, [?new_seq($-)|Stack], Opts);
array(<<?zero, Rest/binary>>, Out, Stack, Opts) ->
zero(Rest, Out, [?new_seq($0)|Stack], Opts);
array(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_nonzero(S) ->
integer(Rest, Out, [?new_seq(S)|Stack], Opts);
array(<<?start_object, Rest/binary>>, Out, Stack, Opts) ->
?event([start_object], object, Rest, Out, [key|Stack], Opts);
array(<<?start_array, Rest/binary>>, Out, Stack, Opts) ->
?event([start_array], array, Rest, Out, [array|Stack], Opts);
array(<<?end_array, Rest/binary>>, Out, [array|Stack], Opts) ->
maybe_done(Rest, [end_array] ++ Out, Stack, Opts);
array(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_whitespace(S) ->
array(Rest, Out, Stack, Opts);
array(<<>>, Out, Stack, Opts) ->
?incomplete(array, <<>>, Out, Stack, Opts);
array(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
value(<<?quote, Rest/binary>>, Out, Stack, Opts) ->
string(Rest, Out, [?new_seq()|Stack], Opts);
value(<<$t, Rest/binary>>, Out, Stack, Opts) ->
tr(Rest, Out, Stack, Opts);
value(<<$f, Rest/binary>>, Out, Stack, Opts) ->
fa(Rest, Out, Stack, Opts);
value(<<$n, Rest/binary>>, Out, Stack, Opts) ->
nu(Rest, Out, Stack, Opts);
value(<<?negative, Rest/binary>>, Out, Stack, Opts) ->
negative(Rest, Out, [?new_seq($-)|Stack], Opts);
value(<<?zero, Rest/binary>>, Out, Stack, Opts) ->
zero(Rest, Out, [?new_seq($0)|Stack], Opts);
value(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_nonzero(S) ->
integer(Rest, Out, [?new_seq(S)|Stack], Opts);
value(<<?start_object, Rest/binary>>, Out, Stack, Opts) ->
?event([start_object], object, Rest, Out, [key|Stack], Opts);
value(<<?start_array, Rest/binary>>, Out, Stack, Opts) ->
?event([start_array], array, Rest, Out, [array|Stack], Opts);
value(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_whitespace(S) ->
value(Rest, Out, Stack, Opts);
value(<<>>, Out, Stack, Opts) ->
?incomplete(value, <<>>, Out, Stack, Opts);
value(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
colon(<<?colon, Rest/binary>>, Out, [key|Stack], Opts) ->
value(Rest, Out, [object|Stack], Opts);
colon(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_whitespace(S) ->
colon(Rest, Out, Stack, Opts);
colon(<<>>, Out, Stack, Opts) ->
?incomplete(colon, <<>>, Out, Stack, Opts);
colon(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
key(<<?quote, Rest/binary>>, Out, Stack, Opts) ->
string(Rest, Out, [?new_seq()|Stack], Opts);
key(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_whitespace(S) ->
key(Rest, Out, Stack, Opts);
key(<<>>, Out, Stack, Opts) ->
?incomplete(key, <<>>, Out, Stack, Opts);
key(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
%% string appends it's output to the term at the top of the stack. for
%% efficiency the strings are build in reverse order and reversed before
%% being added to the output stream
%% string uses partial_utf/1 to cease parsing when invalid encodings are
%% encountered rather than just checking remaining binary size like other
%% states to eliminate certain incomplete states
%% when parsing strings, the naive detection of partial codepoints is
%% insufficient. this incredibly anal function should detect all badly formed
%% utf sequences
partial_utf(<<>>) -> true;
2011-09-02 02:33:06 -05:00
partial_utf(<<X>>) when X >= 16#c2, X =< 16#f4 -> true;
partial_utf(<<X, Y>>) when X >= 16#e0, X =< 16#f4, Y >= 16#80, Y =< 16#bf -> true;
partial_utf(<<X, Y, Z>>)
when X >= 16#f0, X =< 16#f4,
Y >= 16#80, Y =< 16#bf,
Z >= 16#80, Z =< 16#bf ->
true;
partial_utf(_) -> false.
string(<<?quote/utf8, Rest/binary>>, Out, [Acc, key|Stack], Opts) ->
?event([{key, ?end_seq(Acc)}], colon, Rest, Out, [key|Stack], Opts);
string(<<?quote/utf8, Rest/binary>>, Out, [Acc|Stack], Opts) ->
?event([{string, ?end_seq(Acc)}], maybe_done, Rest, Out, Stack, Opts);
string(<<?rsolidus/utf8, Rest/binary>>, Out, Stack, Opts) ->
escape(Rest, Out, Stack, Opts);
%% things get dumb here. erlang doesn't properly restrict unicode non-characters
%% so you can't trust the codepoints it returns always
%% the range 32..16#fdcf is safe, so allow that
string(<<S/utf8, Rest/binary>>, Out, [Acc|Stack], Opts)
when ?is_noncontrol(S), S < 16#fdd0 ->
string(Rest, Out, [?acc_seq(Acc, S)|Stack], Opts);
%% the range 16#fdf0..16#fffd is also safe
string(<<S/utf8, Rest/binary>>, Out, [Acc|Stack], Opts)
when S > 16#fdef, S < 16#fffe ->
string(Rest, Out, [?acc_seq(Acc, S)|Stack], Opts);
%% yes, i think it's insane too
string(<<S/utf8, Rest/binary>>, Out, [Acc|Stack], Opts)
when S > 16#ffff andalso
S =/= 16#1fffe andalso S =/= 16#1ffff andalso
S =/= 16#2fffe andalso S =/= 16#2ffff andalso
S =/= 16#3fffe andalso S =/= 16#3ffff andalso
S =/= 16#4fffe andalso S =/= 16#4ffff andalso
S =/= 16#5fffe andalso S =/= 16#5ffff andalso
S =/= 16#6fffe andalso S =/= 16#6ffff andalso
S =/= 16#7fffe andalso S =/= 16#7ffff andalso
S =/= 16#8fffe andalso S =/= 16#8ffff andalso
S =/= 16#9fffe andalso S =/= 16#9ffff andalso
S =/= 16#afffe andalso S =/= 16#affff andalso
S =/= 16#bfffe andalso S =/= 16#bffff andalso
S =/= 16#cfffe andalso S =/= 16#cffff andalso
S =/= 16#dfffe andalso S =/= 16#dffff andalso
S =/= 16#efffe andalso S =/= 16#effff andalso
S =/= 16#ffffe andalso S =/= 16#fffff andalso
S =/= 16#10fffe andalso S =/= 16#10ffff ->
string(Rest, Out, [?acc_seq(Acc, S)|Stack], Opts);
string(Bin, Out, Stack, Opts) ->
case partial_utf(Bin) of
true -> ?incomplete(string, Bin, Out, Stack, Opts)
; false ->
case Opts#opts.loose_unicode of
true -> noncharacter(Bin, Out, Stack, Opts)
; false -> ?error([Bin, Out, Stack, Opts])
end
end.
%% we don't need to guard against partial utf here, because it's already taken
%% care of in string. theoretically, the last clause of noncharacter/4 is
%% unreachable
%% non-characters erlang doesn't recognize as non-characters, idiotically
noncharacter(<<S/utf8, Rest/binary>>, Out, [Acc|Stack], Opts)
when ?is_noncontrol(S) ->
string(Rest, Out, [?acc_seq(Acc, 16#fffd)|Stack], Opts);
%% u+fffe and u+ffff
noncharacter(<<239, 191, X, Rest/binary>>, Out, [Acc|Stack], Opts)
when X == 190; X == 191 ->
string(Rest, Out, [?acc_seq(Acc, 16#fffd)|Stack], Opts);
%% surrogates
noncharacter(<<237, X, _, Rest/binary>>, Out, [Acc|Stack], Opts) when X >= 160 ->
string(Rest, Out, [?acc_seq(Acc, 16#fffd)|Stack], Opts);
noncharacter(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
escape(<<$b, Rest/binary>>, Out, [Acc|Stack], Opts) ->
string(Rest, Out, [?acc_seq(Acc, $\b)|Stack], Opts);
escape(<<$f, Rest/binary>>, Out, [Acc|Stack], Opts) ->
string(Rest, Out, [?acc_seq(Acc, $\f)|Stack], Opts);
escape(<<$n, Rest/binary>>, Out, [Acc|Stack], Opts) ->
string(Rest, Out, [?acc_seq(Acc, $\n)|Stack], Opts);
escape(<<$r, Rest/binary>>, Out, [Acc|Stack], Opts) ->
string(Rest, Out, [?acc_seq(Acc, $\r)|Stack], Opts);
escape(<<$t, Rest/binary>>, Out, [Acc|Stack], Opts) ->
string(Rest, Out, [?acc_seq(Acc, $\t)|Stack], Opts);
escape(<<$u, Rest/binary>>, Out, Stack, Opts) ->
escaped_unicode(Rest, Out, [?new_seq()|Stack], Opts);
escape(<<S, Rest/binary>>, Out, [Acc|Stack], Opts)
when S =:= ?quote; S =:= ?solidus; S =:= ?rsolidus ->
string(Rest, Out, [?acc_seq(Acc, S)|Stack], Opts);
escape(<<>>, Out, Stack, Opts) ->
?incomplete(escape, <<>>, Out, Stack, Opts);
escape(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
%% this code is ugly and unfortunate, but so is json's handling of escaped
%% unicode codepoint sequences.
escaped_unicode(<<D, Rest/binary>>, Out, [[C,B,A], Acc|Stack], Opts)
when ?is_hex(D) ->
case erlang:list_to_integer([A, B, C, D], 16) of
%% high surrogate, we need a low surrogate next
X when X >= 16#d800, X =< 16#dbff ->
low_surrogate(Rest, Out, [X, Acc|Stack], Opts)
%% non-characters, you're not allowed to exchange these
; X when X == 16#fffe; X == 16#ffff; X >= 16#fdd0, X =< 16#fdef ->
case Opts#opts.loose_unicode of
true ->
string(Rest, Out, [?acc_seq(Acc, 16#fffd)|Stack], Opts)
; false ->
?error([<<D, Rest/binary>>, Out, [[C,B,A], Acc|Stack], Opts])
end
%% allowing interchange of null bytes allows attackers to forge
%% malicious streams
; X when X == 16#0000 ->
case Opts#opts.loose_unicode of
true ->
string(Rest, Out, [?acc_seq(Acc, 16#fffd)|Stack], Opts)
; false ->
?error([<<D, Rest/binary>>, Out, [[C,B,A], Acc|Stack], Opts])
end
%% anything else
; X ->
string(Rest, Out, [?acc_seq(Acc, X)|Stack], Opts)
end;
escaped_unicode(<<S, Rest/binary>>, Out, [Acc|Stack], Opts)
when ?is_hex(S) ->
escaped_unicode(Rest, Out, [?acc_seq(Acc, S)|Stack], Opts);
escaped_unicode(<<>>, Out, Stack, Opts) ->
?incomplete(escaped_unicode, <<>>, Out, Stack, Opts);
escaped_unicode(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
low_surrogate(<<?rsolidus, Rest/binary>>, Out, Stack, Opts) ->
low_surrogate_u(Rest, Out, Stack, Opts);
%% not an escaped codepoint, our high codepoint is illegal. dispatch back to
%% string to handle
low_surrogate(<<S, Rest/binary>> = Bin, Out, [High, String|Stack], Opts) ->
case Opts#opts.loose_unicode of
true ->
string(Bin, Out, [?acc_seq(String, 16#fffd)|Stack], Opts)
; false ->
?error([<<S, Rest/binary>>, Out, [High, String|Stack], Opts])
end;
low_surrogate(<<>>, Out, Stack, Opts) ->
?incomplete(low_surrogate, <<>>, Out, Stack, Opts);
low_surrogate(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
low_surrogate_u(<<$u, Rest/binary>>, Out, Stack, Opts) ->
low_surrogate_v(Rest, Out, [?new_seq()|Stack], Opts);
low_surrogate_u(<<>>, Out, Stack, Opts) ->
?incomplete(low_surrogate_u, <<>>, Out, Stack, Opts);
%% not a low surrogate, dispatch back to string to handle, including the
%% rsolidus we parsed previously
low_surrogate_u(Bin, Out, [High, String|Stack], Opts) ->
case Opts#opts.loose_unicode of
true ->
string(<<?rsolidus, Bin/binary>>, Out, [?acc_seq(String, 16#fffd)|Stack], Opts)
; false ->
?error([Bin, Out, [High, String|Stack], Opts])
2011-09-02 02:33:06 -05:00
end.
low_surrogate_v(<<D, Rest/binary>>, Out, [[C,B,A], High, String|Stack], Opts)
when ?is_hex(D) ->
case erlang:list_to_integer([A, B, C, D], 16) of
X when X >= 16#dc00, X =< 16#dfff ->
V = surrogate_to_codepoint(High, X),
case V rem 16#10000 of Y when Y == 16#fffe; Y == 16#ffff ->
case Opts#opts.loose_unicode of
true ->
string(Rest, Out, [?acc_seq(String, 16#fffd)|Stack], Opts)
; false ->
?error([<<D, Rest/binary>>, Out, [[C,B,A], High, String|Stack], Opts])
end
; _ ->
string(Rest, Out, [?acc_seq(String, V)|Stack], Opts)
end
%% not a low surrogate, bad bad bad
; _ ->
case Opts#opts.loose_unicode of
true ->
string(Rest, Out, [?acc_seq(?acc_seq(String, 16#fffd), 16#fffd)|Stack], Opts)
; false ->
?error([<<D, Rest/binary>>, Out, [[C,B,A], High, String|Stack], Opts])
end
end;
low_surrogate_v(<<S, Rest/binary>>, Out, [Acc|Stack], Opts)
when ?is_hex(S) ->
low_surrogate_v(Rest, Out, [?acc_seq(Acc, S)|Stack], Opts);
low_surrogate_v(<<>>, Out, Stack, Opts) ->
?incomplete(low_surrogate_v, <<>>, Out, Stack, Opts);
low_surrogate_v(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
%% stole this from the unicode spec
surrogate_to_codepoint(High, Low) ->
(High - 16#d800) * 16#400 + (Low - 16#dc00) + 16#10000.
%% like strings, numbers are collected in an intermediate accumulator before
%% being emitted to the callback handler
negative(<<$0, Rest/binary>>, Out, [Acc|Stack], Opts) ->
zero(Rest, Out, ["0" ++ Acc|Stack], Opts);
negative(<<S, Rest/binary>>, Out, [Acc|Stack], Opts) when ?is_nonzero(S) ->
integer(Rest, Out, [[S] ++ Acc|Stack], Opts);
negative(<<>>, Out, Stack, Opts) ->
?incomplete(negative, <<>>, Out, Stack, Opts);
negative(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
zero(<<?end_object, Rest/binary>>, Out, [Acc, object|Stack], Opts) ->
?event([end_object, format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
zero(<<?end_array, Rest/binary>>, Out, [Acc, array|Stack], Opts) ->
?event([end_array, format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
zero(<<?comma, Rest/binary>>, Out, [Acc, object|Stack], Opts) ->
?event([format_number(Acc)], key, Rest, Out, [key|Stack], Opts);
zero(<<?comma, Rest/binary>>, Out, [Acc, array|Stack], Opts) ->
?event([format_number(Acc)], value, Rest, Out, [array|Stack], Opts);
zero(<<?decimalpoint, Rest/binary>>, Out, [Acc|Stack], Opts) ->
initial_decimal(Rest, Out, [{Acc, []}|Stack], Opts);
zero(<<S, Rest/binary>>, Out, [Acc|Stack], Opts) when ?is_whitespace(S) ->
?event([format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
zero(<<>>, Out, [Acc|Stack], Opts = #opts{explicit_end=false}) ->
?event([format_number(Acc)], maybe_done, <<>>, Out, Stack, Opts);
zero(<<>>, Out, Stack, Opts) ->
?incomplete(zero, <<>>, Out, Stack, Opts);
zero(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
integer(<<S, Rest/binary>>, Out, [Acc|Stack], Opts) when ?is_nonzero(S) ->
integer(Rest, Out, [[S] ++ Acc|Stack], Opts);
integer(<<?end_object, Rest/binary>>, Out, [Acc, object|Stack], Opts) ->
?event([end_object, format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
integer(<<?end_array, Rest/binary>>, Out, [Acc, array|Stack], Opts) ->
?event([end_array, format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
integer(<<?comma, Rest/binary>>, Out, [Acc, object|Stack], Opts) ->
?event([format_number(Acc)], key, Rest, Out, [key|Stack], Opts);
integer(<<?comma, Rest/binary>>, Out, [Acc, array|Stack], Opts) ->
?event([format_number(Acc)], value, Rest, Out, [array|Stack], Opts);
integer(<<?decimalpoint, Rest/binary>>, Out, [Acc|Stack], Opts) ->
initial_decimal(Rest, Out, [{Acc, []}|Stack], Opts);
integer(<<?zero, Rest/binary>>, Out, [Acc|Stack], Opts) ->
integer(Rest, Out, [[?zero] ++ Acc|Stack], Opts);
integer(<<S, Rest/binary>>, Out, [Acc|Stack], Opts) when S =:= $e; S =:= $E ->
e(Rest, Out, [{Acc, [], []}|Stack], Opts);
integer(<<S, Rest/binary>>, Out, [Acc|Stack], Opts) when ?is_whitespace(S) ->
?event([format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
integer(<<>>, Out, [Acc|Stack], Opts = #opts{explicit_end=false}) ->
?event([format_number(Acc)], maybe_done, <<>>, Out, Stack, Opts);
integer(<<>>, Out, Stack, Opts) ->
?incomplete(integer, <<>>, Out, Stack, Opts);
integer(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
initial_decimal(<<S, Rest/binary>>, Out, [{Int, Frac}|Stack], Opts)
when S =:= ?zero; ?is_nonzero(S) ->
decimal(Rest, Out, [{Int, [S] ++ Frac}|Stack], Opts);
initial_decimal(<<>>, Out, Stack, Opts) ->
?incomplete(initial_decimal, <<>>, Out, Stack, Opts);
initial_decimal(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
decimal(<<S, Rest/binary>>, Out, [{Int, Frac}|Stack], Opts)
when S=:= ?zero; ?is_nonzero(S) ->
decimal(Rest, Out, [{Int, [S] ++ Frac}|Stack], Opts);
decimal(<<?end_object, Rest/binary>>, Out, [Acc, object|Stack], Opts) ->
?event([end_object, format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
decimal(<<?end_array, Rest/binary>>, Out, [Acc, array|Stack], Opts) ->
?event([end_array, format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
decimal(<<?comma, Rest/binary>>, Out, [Acc, object|Stack], Opts) ->
?event([format_number(Acc)], key, Rest, Out, [key|Stack], Opts);
decimal(<<?comma, Rest/binary>>, Out, [Acc, array|Stack], Opts) ->
?event([format_number(Acc)], value, Rest, Out, [array|Stack], Opts);
decimal(<<S, Rest/binary>>, Out, [{Int, Frac}|Stack], Opts)
when S =:= $e; S =:= $E ->
e(Rest, Out, [{Int, Frac, []}|Stack], Opts);
decimal(<<S, Rest/binary>>, Out, [Acc|Stack], Opts) when ?is_whitespace(S) ->
?event([format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
decimal(<<>>, Out, [Acc|Stack], Opts = #opts{explicit_end=false}) ->
?event([format_number(Acc)], maybe_done, <<>>, Out, Stack, Opts);
decimal(<<>>, Out, Stack, Opts) ->
?incomplete(decimal, <<>>, Out, Stack, Opts);
decimal(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
e(<<S, Rest/binary>>, Out, [{Int, Frac, Exp}|Stack], Opts)
when S =:= ?zero; ?is_nonzero(S) ->
exp(Rest, Out, [{Int, Frac, [S] ++ Exp}|Stack], Opts);
e(<<S, Rest/binary>>, Out, [{Int, Frac, Exp}|Stack], Opts)
when S =:= ?positive; S =:= ?negative ->
ex(Rest, Out, [{Int, Frac, [S] ++ Exp}|Stack], Opts);
e(<<>>, Out, Stack, Opts) ->
?incomplete(e, <<>>, Out, Stack, Opts);
e(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
ex(<<S, Rest/binary>>, Out, [{Int, Frac, Exp}|Stack], Opts)
when S =:= ?zero; ?is_nonzero(S) ->
exp(Rest, Out, [{Int, Frac, [S] ++ Exp}|Stack], Opts);
ex(<<>>, Out, Stack, Opts) ->
?incomplete(ex, <<>>, Out, Stack, Opts);
ex(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
exp(<<S, Rest/binary>>, Out, [{Int, Frac, Exp}|Stack], Opts)
when S =:= ?zero; ?is_nonzero(S) ->
exp(Rest, Out, [{Int, Frac, [S] ++ Exp}|Stack], Opts);
exp(<<?end_object, Rest/binary>>, Out, [Acc, object|Stack], Opts) ->
?event([end_object, format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
exp(<<?end_array, Rest/binary>>, Out, [Acc, array|Stack], Opts) ->
?event([end_array, format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
exp(<<?comma, Rest/binary>>, Out, [Acc, object|Stack], Opts) ->
?event([format_number(Acc)], key, Rest, Out, [key|Stack], Opts);
exp(<<?comma, Rest/binary>>, Out, [Acc, array|Stack], Opts) ->
?event([format_number(Acc)], value, Rest, Out, [array|Stack], Opts);
exp(<<S, Rest/binary>>, Out, [Acc|Stack], Opts) when ?is_whitespace(S) ->
?event([format_number(Acc)], maybe_done, Rest, Out, Stack, Opts);
exp(<<>>, Out, [Acc|Stack], Opts = #opts{explicit_end=false}) ->
?event([format_number(Acc)], maybe_done, <<>>, Out, Stack, Opts);
exp(<<>>, Out, Stack, Opts) ->
?incomplete(exp, <<>>, Out, Stack, Opts);
exp(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
format_number(Int) when is_list(Int) ->
{integer, list_to_integer(lists:reverse(Int))};
format_number({Int, Frac}) ->
{float, list_to_float(lists:reverse(Frac ++ "." ++ Int))};
format_number({Int, [], Exp}) ->
{float, list_to_float(lists:reverse(Exp ++ "e0." ++ Int))};
format_number({Int, Frac, Exp}) ->
{float, list_to_float(lists:reverse(Exp ++ "e" ++ Frac ++ "." ++ Int))}.
tr(<<$r, Rest/binary>>, Out, Stack, Opts) ->
tru(Rest, Out, Stack, Opts);
tr(<<>>, Out, Stack, Opts) ->
?incomplete(tr, <<>>, Out, Stack, Opts);
tr(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
tru(<<$u, Rest/binary>>, Out, Stack, Opts) ->
true(Rest, Out, Stack, Opts);
tru(<<>>, Out, Stack, Opts) ->
?incomplete(tru, <<>>, Out, Stack, Opts);
tru(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
true(<<$e, Rest/binary>>, Out, Stack, Opts) ->
?event([{literal, true}], maybe_done, Rest, Out, Stack, Opts);
true(<<>>, Out, Stack, Opts) ->
?incomplete(true, <<>>, Out, Stack, Opts);
true(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
fa(<<$a, Rest/binary>>, Out, Stack, Opts) ->
fal(Rest, Out, Stack, Opts);
fa(<<>>, Out, Stack, Opts) ->
?incomplete(fa, <<>>, Out, Stack, Opts);
fa(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
fal(<<$l, Rest/binary>>, Out, Stack, Opts) ->
fals(Rest, Out, Stack, Opts);
fal(<<>>, Out, Stack, Opts) ->
?incomplete(fal, <<>>, Out, Stack, Opts);
fal(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
fals(<<$s, Rest/binary>>, Out, Stack, Opts) ->
false(Rest, Out, Stack, Opts);
fals(<<>>, Out, Stack, Opts) ->
?incomplete(fals, <<>>, Out, Stack, Opts);
fals(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
false(<<$e, Rest/binary>>, Out, Stack, Opts) ->
?event([{literal, false}], maybe_done, Rest, Out, Stack, Opts);
false(<<>>, Out, Stack, Opts) ->
?incomplete(false, <<>>, Out, Stack, Opts);
false(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
nu(<<$u, Rest/binary>>, Out, Stack, Opts) ->
nul(Rest, Out, Stack, Opts);
nu(<<>>, Out, Stack, Opts) ->
?incomplete(nu, <<>>, Out, Stack, Opts);
nu(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
nul(<<$l, Rest/binary>>, Out, Stack, Opts) ->
null(Rest, Out, Stack, Opts);
nul(<<>>, Out, Stack, Opts) ->
?incomplete(nul, <<>>, Out, Stack, Opts);
nul(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
null(<<$l, Rest/binary>>, Out, Stack, Opts) ->
?event([{literal, null}], maybe_done, Rest, Out, Stack, Opts);
null(<<>>, Out, Stack, Opts) ->
?incomplete(null, <<>>, Out, Stack, Opts);
null(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
maybe_done(<<?end_object, Rest/binary>>, Out, [object|Stack], Opts) ->
?event([end_object], maybe_done, Rest, Out, Stack, Opts);
maybe_done(<<?end_array, Rest/binary>>, Out, [array|Stack], Opts) ->
?event([end_array], maybe_done, Rest, Out, Stack, Opts);
maybe_done(<<?comma, Rest/binary>>, Out, [object|Stack], Opts) ->
key(Rest, Out, [key|Stack], Opts);
maybe_done(<<?comma, Rest/binary>>, Out, [array|_] = Stack, Opts) ->
value(Rest, Out, Stack, Opts);
maybe_done(<<S, Rest/binary>>, Out, Stack, Opts) when ?is_whitespace(S) ->
maybe_done(Rest, Out, Stack, Opts);
maybe_done(<<>>, Out, Stack, Opts) when length(Stack) > 0 ->
?incomplete(maybe_done, <<>>, Out, Stack, Opts);
maybe_done(Rest, Out, [], Opts) ->
?event([end_json], done, Rest, Out, [], Opts);
maybe_done(Bin, Out, Stack, Opts) ->
?error([Bin, Out, Stack, Opts]).
done(<<S, Rest/binary>>, Out, [], Opts) when ?is_whitespace(S) ->
done(Rest, Out, [], Opts);
done(<<>>, Out, [], Opts = #opts{explicit_end=true}) ->
{incomplete, fun(Stream) when is_binary(Stream) ->
done(<<Stream/binary>>, Out, [], Opts)
; (end_stream) ->
{ok, lists:reverse(Out)}
end
};
done(<<>>, Out, [], _Opts) -> {ok, lists:reverse(Out)};
done(Bin, Out, Stack, Opts) -> ?error([Bin, Out, Stack, Opts]).
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").
noncharacters_test_() ->
[
{"noncharacters - badjson",
?_assertEqual(check_bad(noncharacters()), [])
},
{"noncharacters - replaced",
?_assertEqual(check_replaced(noncharacters()), [])
}
].
extended_noncharacters_test_() ->
[
{"extended noncharacters - badjson",
?_assertEqual(check_bad(extended_noncharacters()), [])
},
{"extended noncharacters - replaced",
?_assertEqual(check_replaced(extended_noncharacters()), [])
}
].
surrogates_test_() ->
[
{"surrogates - badjson",
?_assertEqual(check_bad(surrogates()), [])
},
{"surrogates - replaced",
?_assertEqual(check_replaced(surrogates()), [])
}
].
control_test_() ->
[
{"control characters - badjson",
?_assertEqual(check_bad(control_characters()), [])
}
].
reserved_test_() ->
[
{"reserved noncharacters - badjson",
?_assertEqual(check_bad(reserved_space()), [])
},
{"reserved noncharacters - replaced",
?_assertEqual(check_replaced(reserved_space()), [])
}
].
zero_test_() ->
[
{"nullbyte - badjson",
?_assertEqual(check_bad(zero()), [])
}
].
good_characters_test_() ->
[
{"acceptable codepoints",
?_assertEqual(check_good(good()), [])
},
{"acceptable extended",
?_assertEqual(check_good(good_extended()), [])
}
].
check_bad(List) ->
lists:dropwhile(fun({_, {error, badjson}}) -> true ; (_) -> false end,
check(List, [], [])
).
check_replaced(List) ->
2011-10-27 23:11:26 -07:00
lists:dropwhile(fun({_, [{string, <<16#fffd/utf8>>}|_]}) ->
true
; (_) ->
false
end,
check(List, [loose_unicode], [])
).
check_good(List) ->
lists:dropwhile(fun({_, [{string, _}]}) -> true ; (_) -> false end,
check(List, [], [])
).
check([], _Opts, Acc) -> Acc;
check([H|T], Opts, Acc) ->
R = decode(to_fake_utf(H, utf8), Opts),
check(T, Opts, [{H, R}] ++ Acc).
decode(JSON, Opts) ->
try
{ok, Events} = (decoder(Opts))(JSON),
loop(Events, [])
catch
error:badarg -> {error, badjson}
end.
loop([end_json], Acc) -> lists:reverse(Acc);
loop([Event|Events], Acc) -> loop(Events, [Event] ++ Acc);
loop(_, _) -> {error, badjson}.
noncharacters() -> lists:seq(16#fffe, 16#ffff).
extended_noncharacters() ->
[16#1fffe, 16#1ffff, 16#2fffe, 16#2ffff]
++ [16#3fffe, 16#3ffff, 16#4fffe, 16#4ffff]
++ [16#5fffe, 16#5ffff, 16#6fffe, 16#6ffff]
++ [16#7fffe, 16#7ffff, 16#8fffe, 16#8ffff]
++ [16#9fffe, 16#9ffff, 16#afffe, 16#affff]
++ [16#bfffe, 16#bffff, 16#cfffe, 16#cffff]
++ [16#dfffe, 16#dffff, 16#efffe, 16#effff]
++ [16#ffffe, 16#fffff, 16#10fffe, 16#10ffff].
surrogates() -> lists:seq(16#d800, 16#dfff).
control_characters() -> lists:seq(1, 31).
reserved_space() -> lists:seq(16#fdd0, 16#fdef).
zero() -> [0].
good() -> [32, 33]
++ lists:seq(16#23, 16#5b)
++ lists:seq(16#5d, 16#d7ff)
++ lists:seq(16#e000, 16#fdcf)
++ lists:seq(16#fdf0, 16#fffd).
good_extended() -> lists:seq(16#100000, 16#10fffd).
%% erlang refuses to encode certain codepoints, so fake them all
to_fake_utf(N, utf8) when N < 16#0080 -> <<34/utf8, N:8, 34/utf8>>;
to_fake_utf(N, utf8) when N < 16#0800 ->
<<0:5, Y:5, X:6>> = <<N:16>>,
<<34/utf8, 2#110:3, Y:5, 2#10:2, X:6, 34/utf8>>;
to_fake_utf(N, utf8) when N < 16#10000 ->
<<Z:4, Y:6, X:6>> = <<N:16>>,
<<34/utf8, 2#1110:4, Z:4, 2#10:2, Y:6, 2#10:2, X:6, 34/utf8>>;
to_fake_utf(N, utf8) ->
<<0:3, W:3, Z:6, Y:6, X:6>> = <<N:24>>,
<<34/utf8, 2#11110:5, W:3, 2#10:2, Z:6, 2#10:2, Y:6, 2#10:2, X:6, 34/utf8>>.
-endif.