massive simplification of api, operation and internals. removes all demo modules temporarily

This commit is contained in:
alisdair sullivan 2011-08-31 18:52:01 -07:00
parent 7fbb29369b
commit 7e88a14525
19 changed files with 1358 additions and 3086 deletions

View file

@ -1,144 +0,0 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
%% opts record for decoder/encoder
-record(opts, {
loose_unicode = false,
encoding = auto,
escape_forward_slash = false,
iterate = false
}).
-define(is_utf_encoding(X),
X == utf8
; X == utf16
; X == utf32
; X == {utf16, little}
; X == {utf32, little}
).
-type jsx_opts() :: [jsx_opt()].
-type jsx_opt() :: multi_term
| loose_unicode
| escape_forward_slashes
| {encoding, auto
| utf8
| utf16
| {utf16, little}
| utf32
| {utf32, little}
}.
-type jsx_event() :: start_object
| end_object
| start_array
| end_array
| end_json
| {key, list()}
| {string, list()}
| {integer, integer()}
| {float, float()}
| {literal, true}
| {literal, false}
| {literal, null}.
-type jsx_encodeable() :: jsx_event() | [jsx_encodeable()].
-type jsx_iterator() :: jsx_decoder() | jsx_encoder().
%% this probably doesn't work properly
-type jsx_decoder() :: fun((binary()) -> jsx_iterator_result()).
-type jsx_encoder() :: fun((jsx_encodeable()) -> jsx_iterator_result()).
-type jsx_iterator_result() ::
{jsx, jsx_event(), fun(() -> jsx_iterator_result())}
| {jsx, [jsx_event()], fun(() -> jsx_iterator_result())}
| {jsx, incomplete, jsx_iterator()}
| {error, {badjson, any()}}.
-type supported_utf() :: utf8
| utf16
| {utf16, little}
| utf32
| {utf32, little}.
%% json specification
-type jsx_array() :: [jsx_term()] | [].
-type jsx_object() :: [{jsx_key(), jsx_term()}] | [{}].
-type jsx_key() :: binary().
-type jsx_term() :: jsx_array()
| jsx_object()
| jsx_string()
| jsx_number()
| true | false | null.
-type jsx_string() :: binary().
-type jsx_number() :: float() | integer().
-type encoder_opts() :: [encoder_opt()].
-type encoder_opt() :: {strict, true | false}
| {encoding, supported_utf()}
| {space, integer()}
| space
| {indent, integer()}
| indent.
-type decoder_opts() :: [decoder_opt()].
-type decoder_opt() :: {strict, true | false}
| {repeatable_keys, true | false}
| repeatable_keys
| {encoding, supported_utf()}.
-type verify_opts() :: [verify_opt()].
-type verify_opt() :: {encoding, auto | supported_utf()}
| {repeated_keys, true | false}
| {naked_values, true | false}.
-type format_opts() :: [format_opt()].
-type format_opt() :: {encoding, auto | supported_utf()}
| {space, integer()}
| space
| {indent, integer()}
| indent
| {output_encoding, supported_utf()}.

File diff suppressed because it is too large Load diff

View file

@ -20,21 +20,20 @@
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-record(format_opts, {
space = 0,
indent = 0,
output_encoding = utf8
-record(opts, {
loose_unicode = false,
escape_forward_slash = false
}).
-define(newline, $\n).
-define(space, 16#20). %% ascii code for space
-define(quote, $\").
-define(comma, $,).
-define(colon, $:).
-define(start_object, ${).
-define(end_object, $}).
-define(start_array, $[).
-define(end_array, $]).
parse_opts(Opts) ->
parse_opts(Opts, #opts{}).
parse_opts([], Opts) ->
Opts;
parse_opts([loose_unicode|Rest], Opts) ->
parse_opts(Rest, Opts#opts{loose_unicode=true});
parse_opts([escape_forward_slash|Rest], Opts) ->
parse_opts(Rest, Opts#opts{escape_forward_slash=true});
parse_opts(_, _) ->
{error, badarg}.

683
include/jsx_scanner.hrl Normal file
View file

@ -0,0 +1,683 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
%% whitespace
-define(space, 16#20).
-define(tab, 16#09).
-define(cr, 16#0D).
-define(newline, 16#0A).
%% object delimiters
-define(start_object, 16#7B).
-define(end_object, 16#7D).
%% array delimiters
-define(start_array, 16#5B).
-define(end_array, 16#5D).
%% kv seperator
-define(comma, 16#2C).
-define(quote, 16#22).
-define(colon, 16#3A).
%% string escape sequences
-define(escape, 16#5C).
-define(rsolidus, 16#5C).
-define(solidus, 16#2F).
-define(formfeed, 16#0C).
-define(backspace, 16#08).
-define(unicode, 16#75).
%% math
-define(zero, 16#30).
-define(decimalpoint, 16#2E).
-define(negative, 16#2D).
-define(positive, 16#2B).
%% some useful guards
-define(is_hex(Symbol),
(Symbol >= $a andalso Symbol =< $z); (Symbol >= $A andalso Symbol =< $Z);
(Symbol >= $0 andalso Symbol =< $9)
).
-define(is_nonzero(Symbol),
Symbol >= $1 andalso Symbol =< $9
).
-define(is_noncontrol(Symbol),
(Symbol >= ?space)
).
-define(is_whitespace(Symbol),
Symbol =:= ?space; Symbol =:= ?tab; Symbol =:= ?cr; Symbol =:= ?newline
).
%% error, incomplete and event macros
-ifndef(error).
-define(error(Args),
erlang:error(badarg, Args)
).
-endif.
-ifndef(incomplete).
-define(incomplete(State, Rest, T, Stack, Opts),
{ok, lists:reverse(T), fun(Stream) when is_binary(Stream) ->
State(<<Stream/binary, Rest/binary>>, [], Stack, Opts)
end
}
).
-define(incomplete(State, Rest, T, Stack, Opts, Acc),
{ok, T, fun(Stream) when is_binary(Stream) ->
State(<<Stream/binary, Rest/binary>>, [], Stack, Opts, Acc)
end
}
).
-endif.
-ifndef(event).
-define(event(Event, State, Rest, T, Stack, Opts),
State(Rest, Event ++ T, Stack, Opts)
).
-endif.
start(<<?start_object, Rest/binary>>, T, Stack, Opts) ->
?event([start_object], object, Rest, T, [key|Stack], Opts);
start(<<?start_array, Rest/binary>>, T, Stack, Opts) ->
?event([start_array], array, Rest, T, [array|Stack], Opts);
start(<<?quote, Rest/binary>>, T, Stack, Opts) ->
string(Rest, T, Stack, Opts, []);
start(<<$t, Rest/binary>>, T, Stack, Opts) ->
tr(Rest, T, Stack, Opts);
start(<<$f, Rest/binary>>, T, Stack, Opts) ->
fa(Rest, T, Stack, Opts);
start(<<$n, Rest/binary>>, T, Stack, Opts) ->
nu(Rest, T, Stack, Opts);
start(<<?negative, Rest/binary>>, T, Stack, Opts) ->
negative(Rest, T, Stack, Opts, "-");
start(<<?zero, Rest/binary>>, T, Stack, Opts) ->
zero(Rest, T, Stack, Opts, "0");
start(<<S/utf8, Rest/binary>>, T, Stack, Opts) when ?is_nonzero(S) ->
integer(Rest, T, Stack, Opts, [S]);
start(<<S, Rest/binary>>, T, Stack, Opts) when ?is_whitespace(S) ->
start(Rest, T, Stack, Opts);
start(<<>>, T, Stack, Opts) ->
?incomplete(start, <<>>, T, Stack, Opts);
start(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
object(<<?quote, Rest/binary>>, T, Stack, Opts) ->
string(Rest, T, Stack, Opts, []);
object(<<?end_object, Rest/binary>>, T, [key|Stack], Opts) ->
?event([end_object], maybe_done, Rest, T, Stack, Opts);
object(<<S, Rest/binary>>, T, Stack, Opts) when ?is_whitespace(S) ->
object(Rest, T, Stack, Opts);
object(<<>>, T, Stack, Opts) ->
?incomplete(object, <<>>, T, Stack, Opts);
object(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
array(<<?quote, Rest/binary>>, T, Stack, Opts) ->
string(Rest, T, Stack, Opts, []);
array(<<$t, Rest/binary>>, T, Stack, Opts) ->
tr(Rest, T, Stack, Opts);
array(<<$f, Rest/binary>>, T, Stack, Opts) ->
fa(Rest, T, Stack, Opts);
array(<<$n, Rest/binary>>, T, Stack, Opts) ->
nu(Rest, T, Stack, Opts);
array(<<?negative, Rest/binary>>, T, Stack, Opts) ->
negative(Rest, T, Stack, Opts, "-");
array(<<?zero, Rest/binary>>, T, Stack, Opts) ->
zero(Rest, T, Stack, Opts, "0");
array(<<S, Rest/binary>>, T, Stack, Opts) when ?is_nonzero(S) ->
integer(Rest, T, Stack, Opts, [S]);
array(<<?start_object, Rest/binary>>, T, Stack, Opts) ->
?event([start_object], object, Rest, T, [key|Stack], Opts);
array(<<?start_array, Rest/binary>>, T, Stack, Opts) ->
?event([start_array], array, Rest, T, [array|Stack], Opts);
array(<<?end_array, Rest/binary>>, T, [array|Stack], Opts) ->
maybe_done(Rest, [end_array] ++ T, Stack, Opts);
array(<<S, Rest/binary>>, T, Stack, Opts) when ?is_whitespace(S) ->
array(Rest, T, Stack, Opts);
array(<<>>, T, Stack, Opts) ->
?incomplete(array, <<>>, T, Stack, Opts);
array(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
value(<<?quote, Rest/binary>>, T, Stack, Opts) ->
string(Rest, T, Stack, Opts, []);
value(<<$t, Rest/binary>>, T, Stack, Opts) ->
tr(Rest, T, Stack, Opts);
value(<<$f, Rest/binary>>, T, Stack, Opts) ->
fa(Rest, T, Stack, Opts);
value(<<$n, Rest/binary>>, T, Stack, Opts) ->
nu(Rest, T, Stack, Opts);
value(<<?negative, Rest/binary>>, T, Stack, Opts) ->
negative(Rest, T, Stack, Opts, "-");
value(<<?zero, Rest/binary>>, T, Stack, Opts) ->
zero(Rest, T, Stack, Opts, "0");
value(<<S, Rest/binary>>, T, Stack, Opts) when ?is_nonzero(S) ->
integer(Rest, T, Stack, Opts, [S]);
value(<<?start_object, Rest/binary>>, T, Stack, Opts) ->
?event([start_object], object, Rest, T, [key|Stack], Opts);
value(<<?start_array, Rest/binary>>, T, Stack, Opts) ->
?event([start_array], array, Rest, T, [array|Stack], Opts);
value(<<S, Rest/binary>>, T, Stack, Opts) when ?is_whitespace(S) ->
value(Rest, T, Stack, Opts);
value(<<>>, T, Stack, Opts) ->
?incomplete(value, <<>>, T, Stack, Opts);
value(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
colon(<<?colon, Rest/binary>>, T, [key|Stack], Opts) ->
value(Rest, T, [object|Stack], Opts);
colon(<<S, Rest/binary>>, T, Stack, Opts) when ?is_whitespace(S) ->
colon(Rest, T, Stack, Opts);
colon(<<>>, T, Stack, Opts) ->
?incomplete(colon, <<>>, T, Stack, Opts);
colon(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
key(<<?quote, Rest/binary>>, T, Stack, Opts) ->
string(Rest, T, Stack, Opts, []);
key(<<S, Rest/binary>>, T, Stack, Opts) when ?is_whitespace(S) ->
key(Rest, T, Stack, Opts);
key(<<>>, T, Stack, Opts) ->
?incomplete(key, <<>>, T, Stack, Opts);
key(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
%% string has an additional parameter, an accumulator (Acc) used to hold the
%% intermediate representation of the string being parsed. using a list of
%% integers representing unicode codepoints is faster than constructing
%% binaries, there's a branch kicking around which proves it
%% string uses partial_utf/1 to cease parsing when invalid encodings are
%% encountered rather than just checking remaining binary size like other
%% states to eliminate certain incomplete states
%% when parsing strings, the naive detection of partial codepoints is
%% insufficient. this incredibly anal function should detect all badly formed
%% utf sequences
partial_utf(<<>>) -> true;
partial_utf(<<X>>) when X >= 16#c2, X =< 16#df -> true;
partial_utf(<<X, Rest/binary>>) when X >= 16#e0, X =< 16#ef ->
case Rest of
<<>> -> true
; <<Y>> when Y >= 16#80, Y =< 16#bf -> true
; _ -> false
end;
partial_utf(<<X, Rest/binary>>) when X >= 16#f0, X =< 16#f4 ->
case Rest of
<<>> -> true
; <<Y>> when Y >= 16#80, Y =< 16#bf -> true
; <<Y, Z>> when Y >= 16#80, Y =< 16#bf, Z >= 16#80, Z =< 16#bf -> true
; _ -> false
end;
partial_utf(_) -> false.
string(<<?quote, Rest/binary>>, T, [key|_] = Stack, Opts, Acc) ->
?event([{key, lists:reverse(Acc)}], colon, Rest, T, Stack, Opts);
string(<<?quote, Rest/binary>>, T, Stack, Opts, Acc) ->
?event([{string, lists:reverse(Acc)}], maybe_done, Rest, T, Stack, Opts);
string(<<?rsolidus, Rest/binary>>, T, Stack, Opts, Acc) ->
escape(Rest, T, Stack, Opts, Acc);
%% things get dumb here. erlang doesn't properly restrict unicode non-characters
%% so you can't trust the codepoints it returns always
%% the range 32..16#fdcf is safe, so allow that
string(<<S/utf8, Rest/binary>>, T, Stack, Opts, Acc)
when ?is_noncontrol(S), S < 16#fdd0 ->
string(Rest, T, Stack, Opts, [S] ++ Acc);
%% the range 16#fdf0..16#fffd is also safe
string(<<S/utf8, Rest/binary>>, T, Stack, Opts, Acc)
when S > 16#fdef, S < 16#fffe ->
string(Rest, T, Stack, Opts, [S] ++ Acc);
%% yes, i think it's insane too
string(<<S/utf8, Rest/binary>>, T, Stack, Opts, Acc)
when S > 16#ffff andalso
S =/= 16#1fffe andalso S =/= 16#1ffff andalso
S =/= 16#2fffe andalso S =/= 16#2ffff andalso
S =/= 16#3fffe andalso S =/= 16#3ffff andalso
S =/= 16#4fffe andalso S =/= 16#4ffff andalso
S =/= 16#5fffe andalso S =/= 16#5ffff andalso
S =/= 16#6fffe andalso S =/= 16#6ffff andalso
S =/= 16#7fffe andalso S =/= 16#7ffff andalso
S =/= 16#8fffe andalso S =/= 16#8ffff andalso
S =/= 16#9fffe andalso S =/= 16#9ffff andalso
S =/= 16#afffe andalso S =/= 16#affff andalso
S =/= 16#bfffe andalso S =/= 16#bffff andalso
S =/= 16#cfffe andalso S =/= 16#cffff andalso
S =/= 16#dfffe andalso S =/= 16#dffff andalso
S =/= 16#efffe andalso S =/= 16#effff andalso
S =/= 16#ffffe andalso S =/= 16#fffff andalso
S =/= 16#10fffe andalso S =/= 16#10ffff ->
string(Rest, T, Stack, Opts, [S] ++ Acc);
string(Bin, T, Stack, Opts, Acc) ->
case partial_utf(Bin) of
true -> ?incomplete(string, Bin, T, Stack, Opts, Acc)
; false ->
case Opts#opts.loose_unicode of
true -> noncharacter(Bin, T, Stack, Opts, Acc)
; false -> ?error([Bin, T, Stack, Opts, Acc])
end
end.
%% we don't need to guard against partial utf here, because it's already taken
%% care of in string. theoretically, the last clause of noncharacter/4 is
%% unreachable
%% non-characters erlang doesn't recognize as non-characters, idiotically
noncharacter(<<S/utf8, Rest/binary>>, T, Stack, Opts, Acc)
when ?is_noncontrol(S) ->
string(Rest, T, Stack, Opts, [16#fffd] ++ Acc);
%% u+fffe and u+ffff
noncharacter(<<239, 191, X, Rest/binary>>, T, Stack, Opts, Acc)
when X == 190; X == 191 ->
string(Rest, T, Stack, Opts, [16#fffd] ++ Acc);
%% surrogates
noncharacter(<<237, X, _, Rest/binary>>, T, Stack, Opts, Acc) when X >= 160 ->
string(Rest, T, Stack, Opts, [16#fffd] ++ Acc);
noncharacter(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
escape(<<$b, Rest/binary>>, T, Stack, Opts, Acc) ->
string(Rest, T, Stack, Opts, "\b" ++ Acc);
escape(<<$f, Rest/binary>>, T, Stack, Opts, Acc) ->
string(Rest, T, Stack, Opts, "\f" ++ Acc);
escape(<<$n, Rest/binary>>, T, Stack, Opts, Acc) ->
string(Rest, T, Stack, Opts, "\n" ++ Acc);
escape(<<$r, Rest/binary>>, T, Stack, Opts, Acc) ->
string(Rest, T, Stack, Opts, "\r" ++ Acc);
escape(<<$t, Rest/binary>>, T, Stack, Opts, Acc) ->
string(Rest, T, Stack, Opts, "\t" ++ Acc);
escape(<<$u, Rest/binary>>, T, Stack, Opts, Acc) ->
escaped_unicode(Rest, T, Stack, Opts, {[], Acc});
escape(<<S, Rest/binary>>, T, Stack, Opts, Acc)
when S =:= ?quote; S =:= ?solidus; S =:= ?rsolidus ->
string(Rest, T, Stack, Opts, [S] ++ Acc);
escape(<<>>, T, Stack, Opts, Acc) ->
?incomplete(escape, <<>>, T, Stack, Opts, Acc);
escape(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
%% this code is ugly and unfortunate, but so is json's handling of escaped
%% unicode codepoint sequences.
escaped_unicode(<<D, Rest/binary>>, T, Stack, Opts, {[C, B, A], String})
when ?is_hex(D) ->
case erlang:list_to_integer([A, B, C, D], 16) of
%% high surrogate, we need a low surrogate next
X when X >= 16#d800, X =< 16#dbff ->
low_surrogate(Rest, T, Stack, Opts, {X, String})
%% non-characters, you're not allowed to exchange these
; X when X == 16#fffe; X == 16#ffff; X >= 16#fdd0, X =< 16#fdef ->
case Opts#opts.loose_unicode of
true ->
string(Rest, T, Stack, Opts, [16#fffd] ++ String)
; false ->
?error([<<D, Rest/binary>>, T, Stack, Opts, {[C, B, A], String}])
end
%% allowing interchange of null bytes allows attackers to forge
%% malicious streams
; X when X == 16#0000 ->
case Opts#opts.loose_unicode of
true ->
string(Rest, T, Stack, Opts, [16#fffd] ++ String)
; false ->
?error([<<D, Rest/binary>>, T, Stack, Opts, {[C, B, A], String}])
end
%% anything else
; X ->
string(Rest, T, Stack, Opts, [X] ++ String)
end;
escaped_unicode(<<S, Rest/binary>>, T, Stack, Opts, {Acc, String})
when ?is_hex(S) ->
escaped_unicode(Rest, T, Stack, Opts, {[S] ++ Acc, String});
escaped_unicode(<<>>, T, Stack, Opts, Acc) ->
?incomplete(escaped_unicode, <<>>, T, Stack, Opts, Acc);
escaped_unicode(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
low_surrogate(<<?rsolidus, Rest/binary>>, T, Stack, Opts, Acc) ->
low_surrogate_u(Rest, T, Stack, Opts, Acc);
%% not an escaped codepoint, our high codepoint is illegal. dispatch back to
%% string to handle
low_surrogate(<<S, Rest/binary>> = Bin, T, Stack, Opts, {High, String}) ->
case Opts#opts.loose_unicode of
true ->
string(Bin, T, Stack, Opts, [16#fffd] ++ String)
; false ->
?error([<<S, Rest/binary>>, T, Stack, Opts, {High, String}])
end;
low_surrogate(<<>>, T, Stack, Opts, Acc) ->
?incomplete(low_surrogate, <<>>, T, Stack, Opts, Acc);
low_surrogate(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
low_surrogate_u(<<$u, Rest/binary>>, T, Stack, Opts, {High, String}) ->
low_surrogate_v(Rest, T, Stack, Opts, {[], High, String});
%% not a low surrogate, dispatch back to string to handle, including the
%% rsolidus we parsed previously
low_surrogate_u(<<S, Rest/binary>> = Bin, T, Stack, Opts, {High, String}) ->
case Opts#opts.loose_unicode of
true ->
string(<<?rsolidus, Bin/binary>>,
T,
Stack,
Opts,
[16#fffd] ++ String
)
; false ->
?error([<<S, Rest/binary>>, T, Stack, Opts, {High, String}])
end;
low_surrogate_u(<<>>, T, Stack, Opts, Acc) ->
?incomplete(low_surrogate_u, <<>>, T, Stack, Opts, Acc);
low_surrogate_u(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
low_surrogate_v(<<D, Rest/binary>>, T, Stack, Opts, {[C, B, A], High, String})
when ?is_hex(D) ->
case erlang:list_to_integer([A, B, C, D], 16) of
X when X >= 16#dc00, X =< 16#dfff ->
V = surrogate_to_codepoint(High, X),
case V rem 16#10000 of Y when Y == 16#fffe; Y == 16#ffff ->
case Opts#opts.loose_unicode of
true ->
string(Rest, T, Stack, Opts, [16#fffd] ++ String)
; false ->
?error([<<D, Rest/binary>>, T, Stack, Opts, {[C, B, A], High, String}])
end
; _ ->
string(Rest, T, Stack, Opts, [V] ++ String)
end
%% not a low surrogate, bad bad bad
; _ ->
case Opts#opts.loose_unicode of
true ->
string(Rest, T, Stack, Opts, [16#fffd, 16#fffd] ++ String)
; false ->
?error([<<D, Rest/binary>>, T, Stack, Opts, {[C, B, A], High, String}])
end
end;
low_surrogate_v(<<S, Rest/binary>>, T, Stack, Opts, {Low, High, String})
when ?is_hex(S) ->
low_surrogate_v(Rest, T, Stack, Opts, {[S] ++ Low, High, String});
low_surrogate_v(<<>>, T, Stack, Opts, Acc) ->
?incomplete(low_surrogate_v, <<>>, T, Stack, Opts, Acc);
low_surrogate_v(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
%% stole this from the unicode spec
surrogate_to_codepoint(High, Low) ->
(High - 16#d800) * 16#400 + (Low - 16#dc00) + 16#10000.
%% like strings, numbers are collected in an intermediate accumulator before
%% being emitted to the callback handler
negative(<<$0, Rest/binary>>, T, Stack, Opts, Acc) ->
zero(Rest, T, Stack, Opts, "0" ++ Acc);
negative(<<S, Rest/binary>>, T, Stack, Opts, Acc) when ?is_nonzero(S) ->
integer(Rest, T, Stack, Opts, [S] ++ Acc);
negative(<<>>, T, Stack, Opts, Acc) ->
?incomplete(negative, <<>>, T, Stack, Opts, Acc);
negative(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
zero(<<?end_object, Rest/binary>>, T, [object|Stack], Opts, Acc) ->
?event([end_object, format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
zero(<<?end_array, Rest/binary>>, T, [array|Stack], Opts, Acc) ->
?event([end_array, format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
zero(<<?comma, Rest/binary>>, T, [object|Stack], Opts, Acc) ->
?event([format_number(Acc)], key, Rest, T, [key|Stack], Opts);
zero(<<?comma, Rest/binary>>, T, [array|_] = Stack, Opts, Acc) ->
?event([format_number(Acc)], value, Rest, T, Stack, Opts);
zero(<<?decimalpoint, Rest/binary>>, T, Stack, Opts, Acc) ->
initial_decimal(Rest, T, Stack, Opts, {Acc, []});
zero(<<S, Rest/binary>>, T, Stack, Opts, Acc) when ?is_whitespace(S) ->
?event([format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
zero(<<>>, T, Stack, Opts, Acc) ->
?incomplete(zero, <<>>, T, Stack, Opts, Acc);
zero(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
integer(<<S, Rest/binary>>, T, Stack, Opts, Acc) when ?is_nonzero(S) ->
integer(Rest, T, Stack, Opts, [S] ++ Acc);
integer(<<?end_object, Rest/binary>>, T, [object|Stack], Opts, Acc) ->
?event([end_object, format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
integer(<<?end_array, Rest/binary>>, T, [array|Stack], Opts, Acc) ->
?event([end_array, format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
integer(<<?comma, Rest/binary>>, T, [object|Stack], Opts, Acc) ->
?event([format_number(Acc)], key, Rest, T, [key|Stack], Opts);
integer(<<?comma, Rest/binary>>, T, [array|_] = Stack, Opts, Acc) ->
?event([format_number(Acc)], value, Rest, T, Stack, Opts);
integer(<<?decimalpoint, Rest/binary>>, T, Stack, Opts, Acc) ->
initial_decimal(Rest, T, Stack, Opts, {Acc, []});
integer(<<?zero, Rest/binary>>, T, Stack, Opts, Acc) ->
integer(Rest, T, Stack, Opts, [?zero] ++ Acc);
integer(<<S, Rest/binary>>, T, Stack, Opts, Acc) when S =:= $e; S =:= $E ->
e(Rest, T, Stack, Opts, {Acc, [], []});
integer(<<S, Rest/binary>>, T, Stack, Opts, Acc) when ?is_whitespace(S) ->
?event([format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
integer(<<>>, T, Stack, Opts, Acc) ->
?incomplete(integer, <<>>, T, Stack, Opts, Acc);
integer(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
initial_decimal(<<S, Rest/binary>>, T, Stack, Opts, {Int, Frac})
when S =:= ?zero; ?is_nonzero(S) ->
decimal(Rest, T, Stack, Opts, {Int, [S] ++ Frac});
initial_decimal(<<>>, T, Stack, Opts, Acc) ->
?incomplete(initial_decimal, <<>>, T, Stack, Opts, Acc);
initial_decimal(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
decimal(<<S, Rest/binary>>, T, Stack, Opts, {Int, Frac})
when S=:= ?zero; ?is_nonzero(S) ->
decimal(Rest, T, Stack, Opts, {Int, [S] ++ Frac});
decimal(<<?end_object, Rest/binary>>, T, [object|Stack], Opts, Acc) ->
?event([end_object, format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
decimal(<<?end_array, Rest/binary>>, T, [array|Stack], Opts, Acc) ->
?event([end_array, format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
decimal(<<?comma, Rest/binary>>, T, [object|Stack], Opts, Acc) ->
?event([format_number(Acc)], key, Rest, T, [key|Stack], Opts);
decimal(<<?comma, Rest/binary>>, T, [array|_] = Stack, Opts, Acc) ->
?event([format_number(Acc)], value, Rest, T, Stack, Opts);
decimal(<<S, Rest/binary>>, T, Stack, Opts, {Int, Frac})
when S =:= $e; S =:= $E ->
e(Rest, T, Stack, Opts, {Int, Frac, []});
decimal(<<S, Rest/binary>>, T, Stack, Opts, Acc) when ?is_whitespace(S) ->
?event([format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
decimal(<<>>, T, Stack, Opts, Acc) ->
?incomplete(decimal, <<>>, T, Stack, Opts, Acc);
decimal(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
e(<<S, Rest/binary>>, T, Stack, Opts, {Int, Frac, Exp})
when S =:= ?zero; ?is_nonzero(S) ->
exp(Rest, T, Stack, Opts, {Int, Frac, [S] ++ Exp});
e(<<S, Rest/binary>>, T, Stack, Opts, {Int, Frac, Exp})
when S =:= ?positive; S =:= ?negative ->
ex(Rest, T, Stack, Opts, {Int, Frac, [S] ++ Exp});
e(<<>>, T, Stack, Opts, Acc) ->
?incomplete(e, <<>>, T, Stack, Opts, Acc);
e(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
ex(<<S, Rest/binary>>, T, Stack, Opts, {Int, Frac, Exp})
when S =:= ?zero; ?is_nonzero(S) ->
exp(Rest, T, Stack, Opts, {Int, Frac, [S] ++ Exp});
ex(<<>>, T, Stack, Opts, Acc) ->
?incomplete(ex, <<>>, T, Stack, Opts, Acc);
ex(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
exp(<<S, Rest/binary>>, T, Stack, Opts, {Int, Frac, Exp})
when S =:= ?zero; ?is_nonzero(S) ->
exp(Rest, T, Stack, Opts, {Int, Frac, [S] ++ Exp});
exp(<<?end_object, Rest/binary>>, T, [object|Stack], Opts, Acc) ->
?event([end_object, format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
exp(<<?end_array, Rest/binary>>, T, [array|Stack], Opts, Acc) ->
?event([end_array, format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
exp(<<?comma, Rest/binary>>, T, [object|Stack], Opts, Acc) ->
?event([format_number(Acc)], key, Rest, T, [key|Stack], Opts);
exp(<<?comma, Rest/binary>>, T, [array|_] = Stack, Opts, Acc) ->
?event([format_number(Acc)], value, Rest, T, Stack, Opts);
exp(<<S, Rest/binary>>, T, Stack, Opts, Acc) when ?is_whitespace(S) ->
?event([format_number(Acc)], maybe_done, Rest, T, Stack, Opts);
exp(<<>>, T, Stack, Opts, Acc) ->
?incomplete(exp, <<>>, T, Stack, Opts, Acc);
exp(Bin, T, Stack, Opts, Acc) ->
?error([Bin, T, Stack, Opts, Acc]).
format_number(Int) when is_list(Int) ->
{integer, list_to_integer(lists:reverse(Int))};
format_number({Int, Frac}) ->
{float, list_to_float(lists:reverse(Frac ++ "." ++ Int))};
format_number({Int, [], Exp}) ->
{float, list_to_float(lists:reverse(Exp ++ "e0." ++ Int))};
format_number({Int, Frac, Exp}) ->
{float, list_to_float(lists:reverse(Exp ++ "e" ++ Frac ++ "." ++ Int))}.
tr(<<$r, Rest/binary>>, T, Stack, Opts) ->
tru(Rest, T, Stack, Opts);
tr(<<>>, T, Stack, Opts) ->
?incomplete(tr, <<>>, T, Stack, Opts);
tr(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
tru(<<$u, Rest/binary>>, T, Stack, Opts) ->
true(Rest, T, Stack, Opts);
tru(<<>>, T, Stack, Opts) ->
?incomplete(tru, <<>>, T, Stack, Opts);
tru(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
true(<<$e, Rest/binary>>, T, Stack, Opts) ->
?event([{literal, true}], maybe_done, Rest, T, Stack, Opts);
true(<<>>, T, Stack, Opts) ->
?incomplete(true, <<>>, T, Stack, Opts);
true(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
fa(<<$a, Rest/binary>>, T, Stack, Opts) ->
fal(Rest, T, Stack, Opts);
fa(<<>>, T, Stack, Opts) ->
?incomplete(fa, <<>>, T, Stack, Opts);
fa(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
fal(<<$l, Rest/binary>>, T, Stack, Opts) ->
fals(Rest, T, Stack, Opts);
fal(<<>>, T, Stack, Opts) ->
?incomplete(fal, <<>>, T, Stack, Opts);
fal(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
fals(<<$s, Rest/binary>>, T, Stack, Opts) ->
false(Rest, T, Stack, Opts);
fals(<<>>, T, Stack, Opts) ->
?incomplete(fals, <<>>, T, Stack, Opts);
fals(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
false(<<$e, Rest/binary>>, T, Stack, Opts) ->
?event([{literal, false}], maybe_done, Rest, T, Stack, Opts);
false(<<>>, T, Stack, Opts) ->
?incomplete(false, <<>>, T, Stack, Opts);
false(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
nu(<<$u, Rest/binary>>, T, Stack, Opts) ->
nul(Rest, T, Stack, Opts);
nu(<<>>, T, Stack, Opts) ->
?incomplete(nu, <<>>, T, Stack, Opts);
nu(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
nul(<<$l, Rest/binary>>, T, Stack, Opts) ->
null(Rest, T, Stack, Opts);
nul(<<>>, T, Stack, Opts) ->
?incomplete(nul, <<>>, T, Stack, Opts);
nul(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
null(<<$l, Rest/binary>>, T, Stack, Opts) ->
?event([{literal, null}], maybe_done, Rest, T, Stack, Opts);
null(<<>>, T, Stack, Opts) ->
?incomplete(null, <<>>, T, Stack, Opts);
null(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
maybe_done(<<?end_object, Rest/binary>>, T, [object|Stack], Opts) ->
?event([end_object], maybe_done, Rest, T, Stack, Opts);
maybe_done(<<?end_array, Rest/binary>>, T, [array|Stack], Opts) ->
?event([end_array], maybe_done, Rest, T, Stack, Opts);
maybe_done(<<?comma, Rest/binary>>, T, [object|Stack], Opts) ->
key(Rest, T, [key|Stack], Opts);
maybe_done(<<?comma, Rest/binary>>, T, [array|_] = Stack, Opts) ->
value(Rest, T, Stack, Opts);
maybe_done(<<S, Rest/binary>>, T, Stack, Opts) when ?is_whitespace(S) ->
maybe_done(Rest, T, Stack, Opts);
maybe_done(Rest, T, [], Opts) ->
?event([end_json], done, Rest, T, [], Opts);
maybe_done(<<>>, T, Stack, Opts) ->
?incomplete(maybe_done, <<>>, T, Stack, Opts);
maybe_done(Bin, T, Stack, Opts) ->
?error([Bin, T, Stack, Opts]).
done(<<S, Rest/binary>>, T, [], Opts) when ?is_whitespace(S) ->
done(Rest, T, [], Opts);
done(<<>>, T, [], Opts) -> ?incomplete(done, <<>>, T, [], Opts);
done(Bin, T, [], Opts) -> ?error([Bin, T, [], Opts]).

228
include/jsx_tokenizer.hrl Normal file
View file

@ -0,0 +1,228 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-ifndef(error).
-define(error(Args),
erlang:error(badarg, Args)
).
-endif.
-ifndef(incomplete).
-define(incomplete(State, T, Stack, Opts),
{ok, lists:reverse(T), fun(Stream) when is_list(Stream) ->
State(Stream, [], Stack, Opts)
end
}
).
-endif.
-ifndef(event).
-define(event(Event, State, Rest, T, Stack, Opts),
State(Rest, Event ++ T, Stack, Opts)
).
-endif.
start({string, String}, [], [], Opts) when is_binary(String); is_list(String) ->
{ok,
[{string, unicode:characters_to_list(json_escape(String, Opts))}, end_json],
fun(X) when is_list(X) -> ?error([X, [], [], Opts]) end
};
start({float, Float}, [], [], Opts) when is_float(Float) ->
{ok,
[{float, Float}, end_json],
fun(X) when is_list(X) -> ?error([X, [], [], Opts]) end
};
start({integer, Int}, [], [], Opts) when is_integer(Int) ->
{ok,
[{integer, Int}, end_json],
fun(X) when is_list(X) -> ?error([X, [], [], Opts]) end
};
start({literal, Atom}, [], [], Opts) when Atom == true; Atom == false; Atom == null ->
{ok,
[{literal, Atom}, end_json],
fun(X) when is_list(X) -> ?error([X, [], [], Opts]) end
};
%% third parameter is a stack to match end_foos to start_foos
start(Forms, [], [], Opts) -> list_or_object(Forms, [], [], Opts).
list_or_object([start_object|Forms], T, Stack, Opts) ->
?event([start_object], key, Forms, T, [object] ++ Stack, Opts);
list_or_object([start_array|Forms], T, Stack, Opts) ->
?event([start_array], value, Forms, T, [array] ++ Stack, Opts);
list_or_object([], T, Stack, Opts) -> ?incomplete(list_or_object, T, Stack, Opts);
list_or_object(Forms, T, Stack, Opts) -> ?error([Forms, T, Stack, Opts]).
key([{key, Key}|Forms], T, Stack, Opts) when is_binary(Key); is_list(Key) ->
?event([{key, unicode:characters_to_list(json_escape(Key, Opts))}],
value, Forms, T, Stack, Opts
);
key([end_object|Forms], T, [object|Stack], Opts) ->
?event([end_object], maybe_done, Forms, T, Stack, Opts);
key([], T, Stack, Opts) -> ?incomplete(key, T, Stack, Opts);
key(Forms, T, Stack, Opts) -> ?error([Forms, T, Stack, Opts]).
value([{string, S}|Forms], T, Stack, Opts) when is_binary(S); is_list(S) ->
?event([{string, unicode:characters_to_list(json_escape(S, Opts))}],
maybe_done, Forms, T, Stack, Opts
);
value([{float, F}|Forms], T, Stack, Opts) when is_float(F) ->
?event([{float, F}], maybe_done, Forms, T, Stack, Opts);
value([{integer, I}|Forms], T, Stack, Opts) when is_integer(I) ->
?event([{integer, I}], maybe_done, Forms, T, Stack, Opts);
value([{literal, L}|Forms], T, Stack, Opts)
when L == true; L == false; L == null ->
?event([{literal, L}], maybe_done, Forms, T, Stack, Opts);
value([start_object|Forms], T, Stack, Opts) ->
?event([start_object], key, Forms, T, [object] ++ Stack, Opts);
value([start_array|Forms], T, Stack, Opts) ->
?event([start_array], maybe_done, Forms, T, [array] ++ Stack, Opts);
value([end_array|Forms], T, [array|Stack], Opts) ->
?event([end_array], maybe_done, Forms, T, Stack, Opts);
value([], T, Stack, Opts) -> ?incomplete(value, T, Stack, Opts);
value(Forms, T, Stack, Opts) -> ?error([Forms, T, Stack, Opts]).
maybe_done([end_json], T, [], Opts) ->
?event([end_json], done, [], T, [], Opts);
maybe_done([end_object|Forms], T, [object|Stack], Opts) ->
?event([end_object], maybe_done, Forms, T, Stack, Opts);
maybe_done([end_array|Forms], T, [array|Stack], Opts) ->
?event([end_array], maybe_done, Forms, T, Stack, Opts);
maybe_done(Forms, T, [object|_] = Stack, Opts) -> key(Forms, T, Stack, Opts);
maybe_done(Forms, T, [array|_] = Stack, Opts) -> value(Forms, T, Stack, Opts);
maybe_done([], T, Stack, Opts) -> ?incomplete(maybe_done, T, Stack, Opts);
maybe_done(Forms, T, Stack, Opts) -> ?error([Forms, T, Stack, Opts]).
done([], T, [], Opts) ->
{ok, lists:reverse(T), fun(X) when is_list(X) ->
done(X, T, [], Opts)
end
};
done(Forms, T, Stack, Opts) -> ?error([Forms, T, Stack, Opts]).
%% json string escaping, for utf8 binaries. escape the json control sequences to
%% their json equivalent, escape other control characters to \uXXXX sequences,
%% everything else should be a legal json string component
json_escape(String, Opts) when is_binary(String) ->
json_escape(String, Opts, <<>>);
json_escape(String, Opts) when is_list(String) ->
json_escape(String, Opts, []).
%% double quote
json_escape(<<$\", Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $\">>);
json_escape([$\"|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$\", $\\] ++ Acc);
%% backslash \ reverse solidus
json_escape(<<$\\, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $\\>>);
json_escape([$\\|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$\\, $\\] ++ Acc);
%% backspace
json_escape(<<$\b, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $b>>);
json_escape([$\b|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$b, $\\] ++ Acc);
%% form feed
json_escape(<<$\f, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $f>>);
json_escape([$\f|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$f, $\\] ++ Acc);
%% newline
json_escape(<<$\n, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $n>>);
json_escape([$\n|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$n, $\\] ++ Acc);
%% cr
json_escape(<<$\r, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $r>>);
json_escape([$\r|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$r, $\\] ++ Acc);
%% tab
json_escape(<<$\t, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $t>>);
json_escape([$\t|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$t, $\\] ++ Acc);
%% other control characters
json_escape(<<C/utf8, Rest/binary>>, Opts, Acc) when C >= 0, C < $\s ->
json_escape(Rest,
Opts,
<<Acc/binary,
(unicode:characters_to_binary(json_escape_sequence(C)))/binary
>>
);
json_escape([C|Rest], Opts, Acc) when C >= 0, C < $\s ->
json_escape(Rest, Opts, lists:reverse(json_escape_sequence(C)) ++ Acc);
%% escape forward slashes -- optionally -- to faciliate microsoft's retarded
%% date format
json_escape(<<$/, Rest/binary>>, Opts=#opts{escape_forward_slash=true}, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $/>>);
json_escape([$/|Rest], Opts=#opts{escape_forward_slash=true}, Acc) ->
json_escape(Rest, Opts, [$/, $\\] ++ Acc);
%% escape u+2028 and u+2029 to avoid problems with jsonp
json_escape(<<C/utf8, Rest/binary>>, Opts, Acc)
when C == 16#2028; C == 16#2029 ->
json_escape(Rest,
Opts,
<<Acc/binary,
(unicode:characters_to_binary(json_escape_sequence(C)))/binary
>>
);
json_escape([C|Rest], Opts, Acc) when C =:= 16#2028; C =:= 16#2029 ->
json_escape(Rest, Opts, lists:reverse(json_escape_sequence(C)) ++ Acc);
%% any other legal codepoint
json_escape(<<C/utf8, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, C/utf8>>);
json_escape([C|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [C] ++ Acc);
json_escape(<<>>, _Opts, Acc) ->
Acc;
json_escape([], _Opts, Acc) ->
lists:reverse(Acc);
json_escape(Rest, Opts, Acc) ->
erlang:error(badarg, [Rest, Opts, Acc]).
%% convert a codepoint to it's \uXXXX equiv.
json_escape_sequence(X) ->
<<A:4, B:4, C:4, D:4>> = <<X:16>>,
[$\\, $u, (to_hex(A)), (to_hex(B)), (to_hex(C)), (to_hex(D))].
to_hex(15) -> $f;
to_hex(14) -> $e;
to_hex(13) -> $d;
to_hex(12) -> $c;
to_hex(11) -> $b;
to_hex(10) -> $a;
to_hex(X) -> X + $0.

View file

@ -21,16 +21,47 @@
%% THE SOFTWARE.
-type jsx_opts() :: [jsx_opt()].
-type jsx_opt() :: multi_term
| loose_unicode
| escape_forward_slashes
| {encoding, auto
| utf8
| utf16
| {utf16, little}
| utf32
| {utf32, little}
}.
-module(jsx_utf16).
-type jsx_event() :: start_object
| end_object
| start_array
| end_array
| end_json
| {key, list()}
| {string, list()}
| {integer, integer()}
| {float, float()}
| {literal, true}
| {literal, false}
| {literal, null}.
-define(utf16, true).
-include("../include/jsx_common.hrl").
-include("../include/jsx_decoder.hrl").
-type jsx_encodeable() :: jsx_event() | [jsx_encodeable()].
%% i've noticed you've noticed that there's no source here. very astute. see
%% jsx_decoder_template.hrl in the include directory. any mofications to this
%% module should be made there, but keep in mind other modules also include
%% that header
-type jsx_iterator() :: jsx_scanner() | jsx_tokenizer().
-type jsx_scanner() :: fun((binary()) -> jsx_iterator_result()).
-type jsx_tokenizer() :: fun((jsx_encodeable()) -> jsx_iterator_result()).
-type jsx_iterator_result() ::
{jsx, jsx_event(), fun(() -> jsx_iterator_result())}
| {jsx, [jsx_event()], fun(() -> jsx_iterator_result())}
| {jsx, incomplete, jsx_iterator()}
| {error, {badjson, any()}}.

View file

@ -4,15 +4,8 @@
{vsn, "0.10.0"},
{modules, [
jsx,
jsx_encoder,
jsx_utf8,
jsx_utf16,
jsx_utf16le,
jsx_utf32,
jsx_utf32le,
jsx_terms,
jsx_format,
jsx_verify,
jsx_tokenizer,
jsx_scanner,
jsx_utils
]},
{registered, []},

View file

@ -25,149 +25,23 @@
%% the core parser api
-export([parser/0, parser/1]).
-export([decoder/0, decoder/1]).
-export([encoder/0, encoder/1]).
-export([term_to_json/1, term_to_json/2]).
-export([json_to_term/1, json_to_term/2]).
-export([is_json/1, is_json/2]).
-export([format/1, format/2]).
-export([scanner/0, scanner/1]).
-include("../include/jsx_types.hrl").
-include("../include/jsx_common.hrl").
-spec scanner() -> jsx_scanner().
scanner() -> scanner([]).
-spec parser() -> jsx_decoder().
parser() -> decoder([]).
-spec parser(OptsList::jsx_opts()) -> jsx_decoder().
parser(OptsList) -> decoder(OptsList).
-spec decoder() -> jsx_decoder().
decoder() -> decoder([]).
-spec decoder(OptsList::jsx_opts()) -> jsx_decoder().
decoder(OptsList) ->
case parse_opts(OptsList) of
{error, badarg} -> {error, badarg}
; Opts ->
case Opts#opts.encoding of
utf8 -> jsx_utf8:decoder(Opts)
; utf16 -> jsx_utf16:decoder(Opts)
; utf32 -> jsx_utf32:decoder(Opts)
; {utf16, little} -> jsx_utf16le:decoder(Opts)
; {utf32, little} -> jsx_utf32le:decoder(Opts)
; auto -> jsx_utils:detect_encoding(Opts)
; _ -> {error, badarg}
end
-spec scanner(OptsList::jsx_opts()) -> jsx_scanner().
scanner(OptsList) ->
fun(Stream) when is_binary(Stream) ->
(jsx_scanner:scanner(OptsList))(Stream)
; (Stream) when is_list(Stream); is_tuple(Stream) ->
(jsx_tokenizer:tokenizer(OptsList))(Stream)
end.
-spec encoder() -> jsx_encoder().
encoder() -> encoder([]).
-spec encoder(OptsList::jsx_opts()) -> jsx_encoder().
encoder(OptsList) ->
case parse_opts(OptsList) of
{error, badarg} -> {error, badarg}
; Opts -> jsx_encoder:encoder(Opts)
end.
-spec json_to_term(JSON::binary()) -> jsx_term().
json_to_term(JSON) ->
try json_to_term(JSON, [])
%% rethrow exception so internals aren't confusingly exposed to users
catch error:badarg -> erlang:error(badarg, [JSON])
end.
-spec json_to_term(JSON::binary(), Opts::decoder_opts()) -> jsx_term().
json_to_term(JSON, Opts) ->
jsx_terms:json_to_term(JSON, Opts).
-spec term_to_json(JSON::jsx_term()) -> binary().
term_to_json(JSON) ->
try term_to_json(JSON, [])
%% rethrow exception so internals aren't confusingly exposed to users
catch error:badarg -> erlang:error(badarg, [JSON])
end.
-spec term_to_json(JSON::jsx_term(), Opts::encoder_opts()) -> binary().
term_to_json(JSON, Opts) ->
try jsx_terms:term_to_json(JSON, Opts)
%% rethrow exception so internals aren't confusingly exposed to users
catch error:badarg -> erlang:error(badarg, [JSON, Opts])
end.
-spec is_json(JSON::binary()) -> true | false
; (Terms::list(jsx_encodeable())) -> true | false.
is_json(JSON) ->
is_json(JSON, []).
-spec is_json(JSON::binary(), Opts::verify_opts()) -> true | false
; (Terms::list(jsx_encodeable()), Opts::verify_opts()) -> true | false.
is_json(JSON, Opts) ->
jsx_verify:is_json(JSON, Opts).
-spec format(JSON::binary()) -> binary() | iolist()
; (Terms::list(jsx_encodeable())) -> binary() | iolist().
format(JSON) ->
format(JSON, []).
-spec format(JSON::binary(), Opts::format_opts()) -> binary() | iolist()
; (Terms::list(jsx_encodeable()), Opts::format_opts()) ->
binary() | iolist().
format(JSON, Opts) ->
jsx_format:format(JSON, Opts).
parse_opts(Opts) ->
parse_opts(Opts, #opts{}).
parse_opts([], Opts) ->
Opts;
parse_opts([loose_unicode|Rest], Opts) ->
parse_opts(Rest, Opts#opts{loose_unicode=true});
parse_opts([iterate|Rest], Opts) ->
parse_opts(Rest, Opts#opts{iterate=true});
parse_opts([escape_forward_slash|Rest], Opts) ->
parse_opts(Rest, Opts#opts{escape_forward_slash=true});
parse_opts([{encoding, Encoding}|Rest], Opts)
when Encoding =:= utf8; Encoding =:= utf16; Encoding =:= utf32;
Encoding =:= {utf16,little}; Encoding =:= {utf32,little};
Encoding =:= auto ->
parse_opts(Rest, Opts#opts{encoding=Encoding});
parse_opts(_, _) ->
{error, badarg}.
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").
@ -179,9 +53,9 @@ jsx_decoder_test_() ->
encoder_decoder_equiv_test_() ->
[
{"encoder/decoder equivalency",
?_assert(begin {jsx, X, _} = (jsx:decoder())(
?_assert(begin {ok, X, _} = (jsx:scanner())(
<<"[\"a\", 17, 3.14, true, {\"k\":false}, []]">>
), X end =:= begin {jsx, Y, _} = (jsx:encoder())(
), X end =:= begin {ok, Y, _} = (jsx:scanner())(
[start_array,
{string, <<"a">>},
{integer, 17},
@ -193,7 +67,8 @@ encoder_decoder_equiv_test_() ->
end_object,
start_array,
end_array,
end_array]
end_array,
end_json]
), Y end
)
}
@ -201,44 +76,14 @@ encoder_decoder_equiv_test_() ->
jsx_decoder_gen([]) -> [];
jsx_decoder_gen(Tests) ->
jsx_decoder_gen(Tests, [utf8,
utf16,
{utf16, little},
utf32,
{utf32, little}
]).
jsx_decoder_gen([_Test|Rest], []) ->
jsx_decoder_gen(Rest);
jsx_decoder_gen([Test|_] = Tests, [Encoding|Encodings]) ->
Name = lists:flatten(proplists:get_value(name, Test) ++ " :: " ++
io_lib:format("~p", [Encoding])
),
JSON = unicode:characters_to_binary(proplists:get_value(json, Test),
unicode,
Encoding
),
jsx_decoder_gen([Test|Rest]) ->
Name = proplists:get_value(name, Test),
JSON = proplists:get_value(json, Test),
JSX = proplists:get_value(jsx, Test),
Flags = proplists:get_value(jsx_flags, Test, []),
{generator,
fun() ->
[{Name ++ " iterative",
?_assertEqual(iterative_decode(JSON, Flags), JSX)}
| {generator,
fun() -> [{Name ++ " incremental", ?_assertEqual(
incremental_decode(JSON, Flags), JSX)
} | {generator,
fun() ->
[{Name, ?_assertEqual(
decode(JSON, Flags), JSX)
} | jsx_decoder_gen(Tests, Encodings)]
end}
]
end}
]
end
}.
{generator, fun() ->
[{Name, ?_assertEqual(decode(JSON, Flags), JSX)} | jsx_decoder_gen(Rest)]
end}.
load_tests(Path) ->
@ -254,7 +99,7 @@ load_tests([Test|Rest], Dir, Acc) ->
ParsedTest = parse_tests(TestSpec, Dir),
load_tests(Rest, Dir, [ParsedTest] ++ Acc)
; {error, _Reason} ->
erlang:error(Test)
erlang:error(badarg, [Test|Rest], Dir, Acc)
end.
@ -264,7 +109,7 @@ parse_tests(TestSpec, Dir) ->
parse_tests([{json, Path}|Rest], Dir, Acc) when is_list(Path) ->
case file:read_file(Dir ++ "/" ++ Path) of
{ok, Bin} -> parse_tests(Rest, Dir, [{json, Bin}] ++ Acc)
; _ -> erlang:error(badarg)
; _ -> erlang:error(badarg, [[{json, Path}|Rest], Dir, Acc])
end;
parse_tests([KV|Rest], Dir, Acc) ->
parse_tests(Rest, Dir, [KV] ++ Acc);
@ -273,34 +118,22 @@ parse_tests([], _Dir, Acc) ->
decode(JSON, Flags) ->
P = jsx:decoder(Flags),
case P(JSON) of
{error, {badjson, _}} -> {error, badjson}
; {jsx, incomplete, More} ->
case More(end_stream) of
{error, {badjson, _}} -> {error, badjson}
; {jsx, T, _} -> T
end
; {jsx, T, _} -> T
try
P = jsx:scanner(Flags),
{ok, X, More} = P(JSON),
{ok, Y, _More} = More(<<" ">>),
V = X ++ Y,
case lists:reverse(V) of
[end_json|_] -> V
; _ -> {error, badjson}
end
catch
error:badarg -> {error, badjson}
end.
iterative_decode(JSON, Flags) ->
P = jsx:decoder([iterate] ++ Flags),
iterative_decode_loop(P(JSON), []).
iterative_decode_loop({jsx, end_json, _Next}, Acc) ->
lists:reverse([end_json] ++ Acc);
iterative_decode_loop({jsx, incomplete, More}, Acc) ->
iterative_decode_loop(More(end_stream), Acc);
iterative_decode_loop({jsx, E, Next}, Acc) ->
iterative_decode_loop(Next(), [E] ++ Acc);
iterative_decode_loop({error, {badjson, _Error}}, _Acc) ->
{error, badjson}.
incremental_decode(<<C:1/binary, Rest/binary>>, Flags) ->
P = jsx:decoder([iterate] ++ Flags),
P = jsx:scanner([iterate] ++ Flags),
incremental_decode_loop(P(C), Rest, []).
incremental_decode_loop({jsx, incomplete, Next}, <<>>, Acc) ->

View file

@ -1,401 +0,0 @@
%% The MIT License
%% Copyright (c) 2011 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_encoder).
-include("../include/jsx_common.hrl").
-export([start/3,
list_or_object/4,
key/4,
value/4,
maybe_done/4,
bad_json/2
]).
-export([encoder/1]).
-spec encoder(Opts::#opts{}) -> jsx_encoder().
encoder(Opts) ->
case Opts#opts.iterate of
true ->
fun(Forms) -> start(Forms, iterate, Opts) end
; false ->
fun(Forms) -> start(Forms, [], Opts) end
end.
%% emit takes a list of `events` to present to client code and formats them
%% appropriately
emit([], {State, Rest, T, Args}) ->
erlang:apply(?MODULE, State, [Rest, T] ++ Args);
emit([incomplete], {State, Rest, T, Args}) ->
{jsx, incomplete, fun(Stream)
when is_binary(Stream) ->
erlang:apply(?MODULE,
State,
[Rest ++ Stream, T] ++ Args
)
; (Else) -> {error, {badjson, Else}}
end};
emit([Event|Events], {_State, _Rest, iterate, _Args} = Next) ->
{jsx, Event, fun() -> emit(Events, Next) end};
emit([end_json|Events], {_State, _Rest, T, _Args} = Next) ->
{jsx, lists:reverse([end_json] ++ T), fun() -> emit(Events, Next) end};
emit([Event|Events], {State, Rest, T, Args}) ->
emit(Events, {State, Rest, [Event] ++ T, Args}).
bad_json(Stream, _) -> {error, {badjson, Stream}}.
start({string, String}, T, Opts) when is_binary(String); is_list(String) ->
emit([{string, unicode:characters_to_list(json_escape(String, Opts))},
end_json,
incomplete
],
{bad_json, [], T, []}
);
start({float, Float}, T, _Opts) when is_float(Float) ->
emit([{float, Float}, end_json, incomplete], {bad_json, [], T, []});
start({integer, Int}, T, _Opts) when is_integer(Int) ->
emit([{integer, Int}, end_json, incomplete], {bad_json, [], T, []});
start({literal, Atom}, T, _Opts) when Atom == true; Atom == false; Atom == null ->
emit([{literal, Atom}, end_json, incomplete], {bad_json, [], T, []});
%% third parameter is a stack to match end_foos to start_foos
start(Forms, T, Opts) -> list_or_object(Forms, T, [], Opts).
list_or_object([start_object|Forms], T, Stack, Opts) ->
emit([start_object], {key, Forms, T, [[object] ++ Stack, Opts]});
list_or_object([start_array|Forms], T, Stack, Opts) ->
emit([start_array], {value, Forms, T, [[array] ++ Stack, Opts]});
list_or_object([], T, Stack, Opts) ->
emit([incomplete], {list_or_object, [], T, [Stack, Opts]});
list_or_object(Forms, _, _, _) -> {error, {badjson, Forms}}.
key([{key, Key}|Forms], T, Stack, Opts) when is_binary(Key); is_list(Key) ->
emit([{key, unicode:characters_to_list(json_escape(Key, Opts))}],
{value, Forms, T, [Stack, Opts]}
);
key([end_object|Forms], T, [object|Stack], Opts) ->
emit([end_object], {maybe_done, Forms, T, [Stack, Opts]});
key([], T, Stack, Opts) ->
emit([incomplete], {key, [], T, [Stack, Opts]});
key(Forms, _, _, _) -> {error, {badjson, Forms}}.
value([{string, S}|Forms], T, Stack, Opts) when is_binary(S); is_list(S) ->
emit([{string, unicode:characters_to_list(json_escape(S, Opts))}],
{maybe_done, Forms, T, [Stack, Opts]}
);
value([{float, F}|Forms], T, Stack, Opts) when is_float(F) ->
emit([{float, F}], {maybe_done, Forms, T, [Stack, Opts]});
value([{integer, I}|Forms], T, Stack, Opts) when is_integer(I) ->
emit([{integer, I}], {maybe_done, Forms, T, [Stack, Opts]});
value([{literal, L}|Forms], T, Stack, Opts)
when L == true; L == false; L == null ->
emit([{literal, L}], {maybe_done, Forms, T, [Stack, Opts]});
value([start_object|Forms], T, Stack, Opts) ->
emit([start_object], {key, Forms, T, [[object] ++ Stack, Opts]});
value([start_array|Forms], T, Stack, Opts) ->
emit([start_array], {value, Forms, T, [[array] ++ Stack, Opts]});
value([end_array|Forms], T, [array|Stack], Opts) ->
emit([end_array], {maybe_done, Forms, T, [Stack, Opts]});
value([], T, Stack, Opts) ->
emit([incomplete], {value, [], T, [Stack, Opts]});
value(Forms, _, _, _) -> {error, {badjson, Forms}}.
maybe_done([], T, [], _Opts) ->
emit([end_json, incomplete], {bad_json, [], T, []});
maybe_done([end_json], T, [], _Opts) ->
emit([end_json, incomplete], {bad_json, [], T, []});
maybe_done([end_object|Forms], T, [object|Stack], Opts) ->
emit([end_object], {maybe_done, Forms, T, [Stack, Opts]});
maybe_done([end_array|Forms], T, [array|Stack], Opts) ->
emit([end_array], {maybe_done, Forms, T, [Stack, Opts]});
maybe_done(Forms, T, [object|_] = Stack, Opts) -> key(Forms, T, Stack, Opts);
maybe_done(Forms, T, [array|_] = Stack, Opts) -> value(Forms, T, Stack, Opts);
maybe_done([], T, Stack, Opts) ->
emit([incomplete], {maybe_done, [], T, [Stack, Opts]});
maybe_done(Forms, _, _, _) -> {error, {badjson, Forms}}.
%% json string escaping, for utf8 binaries. escape the json control sequences to
%% their json equivalent, escape other control characters to \uXXXX sequences,
%% everything else should be a legal json string component
json_escape(String, Opts) when is_binary(String) ->
json_escape(String, Opts, <<>>);
json_escape(String, Opts) when is_list(String) ->
json_escape(String, Opts, []).
%% double quote
json_escape(<<$\", Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $\">>);
json_escape([$\"|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$\", $\\] ++ Acc);
%% backslash \ reverse solidus
json_escape(<<$\\, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $\\>>);
json_escape([$\\|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$\\, $\\] ++ Acc);
%% backspace
json_escape(<<$\b, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $b>>);
json_escape([$\b|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$b, $\\] ++ Acc);
%% form feed
json_escape(<<$\f, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $f>>);
json_escape([$\f|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$f, $\\] ++ Acc);
%% newline
json_escape(<<$\n, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $n>>);
json_escape([$\n|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$n, $\\] ++ Acc);
%% cr
json_escape(<<$\r, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $r>>);
json_escape([$\r|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$r, $\\] ++ Acc);
%% tab
json_escape(<<$\t, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $t>>);
json_escape([$\t|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [$t, $\\] ++ Acc);
%% other control characters
json_escape(<<C/utf8, Rest/binary>>, Opts, Acc) when C >= 0, C < $\s ->
json_escape(Rest,
Opts,
<<Acc/binary,
(unicode:characters_to_binary(json_escape_sequence(C)))/binary
>>
);
json_escape([C|Rest], Opts, Acc) when C >= 0, C < $\s ->
json_escape(Rest, Opts, lists:reverse(json_escape_sequence(C)) ++ Acc);
%% escape forward slashes -- optionally -- to faciliate microsoft's retarded
%% date format
json_escape(<<$/, Rest/binary>>, Opts=#opts{escape_forward_slash=true}, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, $\\, $/>>);
json_escape([$/|Rest], Opts=#opts{escape_forward_slash=true}, Acc) ->
json_escape(Rest, Opts, [$/, $\\] ++ Acc);
%% escape u+2028 and u+2029 to avoid problems with jsonp
json_escape(<<C/utf8, Rest/binary>>, Opts, Acc)
when C == 16#2028; C == 16#2029 ->
json_escape(Rest,
Opts,
<<Acc/binary,
(unicode:characters_to_binary(json_escape_sequence(C)))/binary
>>
);
json_escape([C|Rest], Opts, Acc) when C =:= 16#2028; C =:= 16#2029 ->
json_escape(Rest, Opts, lists:reverse(json_escape_sequence(C)) ++ Acc);
%% any other legal codepoint
json_escape(<<C/utf8, Rest/binary>>, Opts, Acc) ->
json_escape(Rest, Opts, <<Acc/binary, C/utf8>>);
json_escape([C|Rest], Opts, Acc) ->
json_escape(Rest, Opts, [C] ++ Acc);
json_escape(<<>>, _Opts, Acc) ->
Acc;
json_escape([], _Opts, Acc) ->
lists:reverse(Acc);
json_escape(_, _, _) ->
erlang:error(badarg).
%% convert a codepoint to it's \uXXXX equiv.
json_escape_sequence(X) ->
<<A:4, B:4, C:4, D:4>> = <<X:16>>,
[$\\, $u, (to_hex(A)), (to_hex(B)), (to_hex(C)), (to_hex(D))].
to_hex(15) -> $f;
to_hex(14) -> $e;
to_hex(13) -> $d;
to_hex(12) -> $c;
to_hex(11) -> $b;
to_hex(10) -> $a;
to_hex(X) -> X + $0.
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").
encode(Terms) ->
encode_simple(Terms) andalso encode_iterative(Terms).
encode_simple(Terms) ->
case (jsx:encoder([]))(Terms) of
{jsx, Terms, _} ->
true
%% matches [foo, end_json], aka naked terms
; {jsx, [Terms, end_json], _} ->
true
; {error, _} ->
false
end.
encode_iterative(Terms) ->
case loop((jsx:encoder([iterate]))(Terms), []) of
{ok, Terms} ->
true
%% matches naked terms
; {ok, [Terms, end_json]} ->
true
; {error, _} ->
false
end.
loop({jsx, end_json, Next}, Acc) ->
{jsx, incomplete, F} = Next(),
{error, _} = F([]),
{ok, lists:reverse([end_json] ++ Acc)};
loop({jsx, Event, Next}, Acc) ->
loop(Next(), [Event] ++ Acc).
encode_test_() ->
[
{"empty object", ?_assert(encode([start_object, end_object, end_json]))},
{"empty array", ?_assert(encode([start_array, end_array, end_json]))},
{"nested empty objects", ?_assert(encode([start_object,
{key, "empty object"},
start_object,
{key, "empty object"},
start_object,
end_object,
end_object,
end_object,
end_json
]))},
{"nested empty arrays", ?_assert(encode([start_array,
start_array,
start_array,
end_array,
end_array,
end_array,
end_json
]))},
{"simple object", ?_assert(encode([start_object,
{key, "a"},
{string, "hello"},
{key, "b"},
{integer, 1},
{key, "c"},
{float, 1.0},
{key, "d"},
{literal, true},
end_object,
end_json
]))},
{"simple array", ?_assert(encode([start_array,
{string, "hello"},
{integer, 1},
{float, 1.0},
{literal, true},
end_array,
end_json
]))},
{"unbalanced array", ?_assertNot(encode([start_array,
end_array,
end_array,
end_json
]))},
{"naked string", ?_assert(encode({string, "hello"}))},
{"naked literal", ?_assert(encode({literal, true}))},
{"naked integer", ?_assert(encode({integer, 1}))},
{"naked float", ?_assert(encode({float, 1.0}))}
].
binary_escape_test_() ->
[
{"json string escaping",
?_assert(json_escape(
<<"\"\\\b\f\n\r\t">>, #opts{}
) =:= <<"\\\"\\\\\\b\\f\\n\\r\\t">>
)
},
{"json string hex escape",
?_assert(json_escape(
<<1, 2, 3, 11, 26, 30, 31>>, #opts{}
) =:= <<"\\u0001\\u0002\\u0003\\u000b\\u001a\\u001e\\u001f">>
)
},
{"jsonp protection",
?_assert(json_escape(
<<226, 128, 168, 226, 128, 169>>, #opts{}
) =:= <<"\\u2028\\u2029">>
)
},
{"microsoft i hate your date format",
?_assert(json_escape(<<"/Date(1303502009425)/">>,
#opts{escape_forward_slash=true}
) =:= <<"\\/Date(1303502009425)\\/">>
)
}
].
string_escape_test_() ->
[
{"json string escaping",
?_assert(json_escape(
"\"\\\b\f\n\r\t", #opts{}
) =:= "\\\"\\\\\\b\\f\\n\\r\\t"
)
},
{"json string hex escape",
?_assert(json_escape(
[1, 2, 3, 11, 26, 30, 31], #opts{}
) =:= "\\u0001\\u0002\\u0003\\u000b\\u001a\\u001e\\u001f"
)
},
{"jsonp protection",
?_assert(json_escape(
[16#2028, 16#2029], #opts{}
) =:= "\\u2028\\u2029"
)
},
{"microsoft i hate your date format",
?_assert(json_escape("/Date(1303502009425)/",
#opts{escape_forward_slash=true}
) =:= "\\/Date(1303502009425)\\/"
)
}
].
-endif.

View file

@ -1,275 +0,0 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_format).
-export([format/2]).
-include("../include/jsx_common.hrl").
-include("jsx_format.hrl").
-spec format(JSON::binary(), Opts::format_opts()) ->
binary() | iolist()
; (Terms::list(jsx_encodeable()), Opts::format_opts()) ->
binary() | iolist()
; (F::jsx_iterator(), Opts::format_opts()) ->
binary() | iolist().
format(JSON, OptsList) when is_binary(JSON) ->
P = jsx:decoder([iterate] ++ extract_parser_opts(OptsList)),
format(fun() -> P(JSON) end, OptsList);
format(Terms, OptsList) when is_list(Terms); is_tuple(Terms) ->
P = jsx:encoder([iterate]),
format(fun() -> P(Terms) end, OptsList);
format(F, OptsList) when is_function(F) ->
Opts = parse_opts(OptsList, #format_opts{}),
{Continue, String} = format_something(F(), Opts, 0),
case Continue() of
{jsx, end_json, _} -> encode(String, Opts)
; _ -> {error, badarg}
end.
parse_opts([{indent, Val}|Rest], Opts) ->
parse_opts(Rest, Opts#format_opts{indent = Val});
parse_opts([indent|Rest], Opts) ->
parse_opts(Rest, Opts#format_opts{indent = 1});
parse_opts([{space, Val}|Rest], Opts) ->
parse_opts(Rest, Opts#format_opts{space = Val});
parse_opts([space|Rest], Opts) ->
parse_opts(Rest, Opts#format_opts{space = 1});
parse_opts([{output_encoding, Val}|Rest], Opts) ->
parse_opts(Rest, Opts#format_opts{output_encoding = Val});
parse_opts([_|Rest], Opts) ->
parse_opts(Rest, Opts);
parse_opts([], Opts) ->
Opts.
extract_parser_opts(Opts) ->
extract_parser_opts(Opts, []).
extract_parser_opts([], Acc) -> Acc;
extract_parser_opts([{K,V}|Rest], Acc) ->
case lists:member(K, [encoding]) of
true -> [{K,V}] ++ Acc
; false -> extract_parser_opts(Rest, Acc)
end;
extract_parser_opts([K|Rest], Acc) ->
case lists:member(K, [encoding]) of
true -> [K] ++ Acc
; false -> extract_parser_opts(Rest, Acc)
end.
format_something({jsx, start_object, Next}, Opts, Level) ->
case Next() of
{jsx, end_object, Continue} ->
{Continue, [?start_object, ?end_object]}
; Event ->
{Continue, Object} = format_object(Event, [], Opts, Level + 1),
{Continue, [?start_object,
Object,
indent(Opts, Level),
?end_object
]}
end;
format_something({jsx, start_array, Next}, Opts, Level) ->
case Next() of
{jsx, end_array, Continue} ->
{Continue, [?start_array, ?end_array]}
; Event ->
{Continue, Object} = format_array(Event, [], Opts, Level + 1),
{Continue, [?start_array, Object, indent(Opts, Level), ?end_array]}
end;
format_something({jsx, {Type, Value}, Next}, _Opts, _Level) ->
{Next, [encode(Type, Value)]}.
format_object({jsx, end_object, Next}, Acc, _Opts, _Level) ->
{Next, Acc};
format_object({jsx, {key, Key}, Next}, Acc, Opts, Level) ->
{Continue, Value} = format_something(Next(), Opts, Level),
case Continue() of
{jsx, end_object, NextNext} ->
{NextNext, [Acc,
indent(Opts, Level),
encode(string, Key),
?colon,
space(Opts),
Value
]}
; Else ->
format_object(Else,
[Acc,
indent(Opts, Level),
encode(string, Key),
?colon,
space(Opts),
Value,
?comma,
space(Opts)
],
Opts,
Level
)
end.
format_array({jsx, end_array, Next}, Acc, _Opts, _Level) ->
{Next, Acc};
format_array(Event, Acc, Opts, Level) ->
{Continue, Value} = format_something(Event, Opts, Level),
case Continue() of
{jsx, end_array, NextNext} ->
{NextNext, [Acc, indent(Opts, Level), Value]}
; Else ->
format_array(Else,
[Acc,
indent(Opts, Level),
Value,
?comma,
space(Opts)
],
Opts,
Level
)
end.
encode(Acc, Opts) when is_list(Acc) ->
case Opts#format_opts.output_encoding of
iolist -> Acc
; UTF when ?is_utf_encoding(UTF) ->
unicode:characters_to_binary(Acc, utf8, UTF)
; _ -> erlang:error(badarg)
end;
encode(string, String) ->
[?quote, String, ?quote];
encode(literal, Literal) ->
erlang:atom_to_list(Literal);
encode(integer, Integer) ->
erlang:integer_to_list(Integer);
encode(float, Float) ->
jsx_utils:nice_decimal(Float).
indent(Opts, Level) ->
case Opts#format_opts.indent of
0 -> []
; X when X > 0 ->
Indent = [ ?space || _ <- lists:seq(1, X) ],
indent(Indent, Level, [?newline])
end.
indent(_Indent, 0, Acc) ->
Acc;
indent(Indent, N, Acc) ->
indent(Indent, N - 1, [Acc, Indent]).
space(Opts) ->
case Opts#format_opts.space of
0 -> []
; X when X > 0 -> [ ?space || _ <- lists:seq(1, X) ]
end.
%% eunit tests
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").
minify_test_() ->
[
{"minify object",
?_assert(format(<<" { \"key\" :\n\t \"value\"\r\r\r\n } ">>,
[]
) =:= <<"{\"key\":\"value\"}">>
)
},
{"minify array",
?_assert(format(<<" [\n\ttrue,\n\tfalse , \n \tnull\n] ">>,
[]
) =:= <<"[true,false,null]">>
)
}
].
opts_test_() ->
[
{"unspecified indent/space",
?_assert(format(<<" [\n\ttrue,\n\tfalse,\n\tnull\n] ">>,
[space, indent]
) =:= <<"[\n true, \n false, \n null\n]">>
)
},
{"specific indent/space",
?_assert(format(
<<"\n{\n\"key\" : [],\n\"another key\" : true\n}\n">>,
[{space, 2}, {indent, 3}]
) =:= <<"{\n \"key\": [], \n \"another key\": true\n}">>
)
},
{"nested structures",
?_assert(format(
<<"[{\"key\":\"value\",
\"another key\": \"another value\"
},
[[true, false, null]]
]">>,
[{space, 2}, {indent, 2}]
) =:= <<"[\n {\n \"key\": \"value\", \n \"another key\": \"another value\"\n }, \n [\n [\n true, \n false, \n null\n ]\n ]\n]">>
)
},
{"just spaces",
?_assert(format(<<"[1,2,3]">>,
[{space, 2}]
) =:= <<"[1, 2, 3]">>
)
},
{"just indent",
?_assert(format(<<"[1.0, 2.0, 3.0]">>,
[{indent, 2}]
) =:= <<"[\n 1.0,\n 2.0,\n 3.0\n]">>
)
}
].
terms_test_() ->
[
{"terms",
?_assert(format([start_object,
{key, <<"key">>},
{string, <<"value">>},
end_object
], []) =:= <<"{\"key\":\"value\"}">>
)}
].
-endif.

188
src/jsx_scanner.erl Normal file
View file

@ -0,0 +1,188 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_scanner).
-export([scanner/1]).
-include("../include/jsx_types.hrl").
-spec scanner(Opts::jsx_opts()) -> jsx_scanner().
scanner(Opts) ->
fun(JSON) -> start(JSON, [], [], parse_opts(Opts)) end.
-include("../include/jsx_opts.hrl").
-include("../include/jsx_scanner.hrl").
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").
noncharacters_test_() ->
[
{"noncharacters - badjson",
?_assertEqual(check_bad(noncharacters()), [])
},
{"noncharacters - replaced",
?_assertEqual(check_replaced(noncharacters()), [])
}
].
extended_noncharacters_test_() ->
[
{"extended noncharacters - badjson",
?_assertEqual(check_bad(extended_noncharacters()), [])
},
{"extended noncharacters - replaced",
?_assertEqual(check_replaced(extended_noncharacters()), [])
}
].
surrogates_test_() ->
[
{"surrogates - badjson",
?_assertEqual(check_bad(surrogates()), [])
},
{"surrogates - replaced",
?_assertEqual(check_replaced(surrogates()), [])
}
].
control_test_() ->
[
{"control characters - badjson",
?_assertEqual(check_bad(control_characters()), [])
}
].
reserved_test_() ->
[
{"reserved noncharacters - badjson",
?_assertEqual(check_bad(reserved_space()), [])
},
{"reserved noncharacters - replaced",
?_assertEqual(check_replaced(reserved_space()), [])
}
].
zero_test_() ->
[
{"nullbyte - badjson",
?_assertEqual(check_bad(zero()), [])
}
].
good_characters_test_() ->
[
{"acceptable codepoints",
?_assertEqual(check_good(good()), [])
},
{"acceptable extended",
?_assertEqual(check_good(good_extended()), [])
}
].
check_bad(List) ->
lists:dropwhile(fun({_, {error, badjson}}) -> true ; (_) -> false end,
check(List, [], [])
).
check_replaced(List) ->
lists:dropwhile(fun({_, [{string, [16#fffd]}|_]}) ->
true
; (_) ->
false
end,
check(List, [loose_unicode], [])
).
check_good(List) ->
lists:dropwhile(fun({_, [{string, _}]}) -> true ; (_) -> false end,
check(List, [], [])
).
check([], _Opts, Acc) -> Acc;
check([H|T], Opts, Acc) ->
R = decode(to_fake_utf(H, utf8), Opts),
check(T, Opts, [{H, R}] ++ Acc).
decode(JSON, Opts) ->
try
{ok, Events, _} = (scanner(Opts))(JSON),
loop(Events, [])
catch
error:badarg -> {error, badjson}
end.
loop([end_json], Acc) -> lists:reverse(Acc);
loop([Event|Events], Acc) -> loop(Events, [Event] ++ Acc);
loop(_, _) -> {error, badjson}.
noncharacters() -> lists:seq(16#fffe, 16#ffff).
extended_noncharacters() ->
[16#1fffe, 16#1ffff, 16#2fffe, 16#2ffff]
++ [16#3fffe, 16#3ffff, 16#4fffe, 16#4ffff]
++ [16#5fffe, 16#5ffff, 16#6fffe, 16#6ffff]
++ [16#7fffe, 16#7ffff, 16#8fffe, 16#8ffff]
++ [16#9fffe, 16#9ffff, 16#afffe, 16#affff]
++ [16#bfffe, 16#bffff, 16#cfffe, 16#cffff]
++ [16#dfffe, 16#dffff, 16#efffe, 16#effff]
++ [16#ffffe, 16#fffff, 16#10fffe, 16#10ffff].
surrogates() -> lists:seq(16#d800, 16#dfff).
control_characters() -> lists:seq(1, 31).
reserved_space() -> lists:seq(16#fdd0, 16#fdef).
zero() -> [0].
good() -> [32, 33]
++ lists:seq(16#23, 16#5b)
++ lists:seq(16#5d, 16#d7ff)
++ lists:seq(16#e000, 16#fdcf)
++ lists:seq(16#fdf0, 16#fffd).
good_extended() -> lists:seq(16#100000, 16#10fffd).
%% erlang refuses to encode certain codepoints, so fake them all
to_fake_utf(N, utf8) when N < 16#0080 -> <<34/utf8, N:8, 34/utf8>>;
to_fake_utf(N, utf8) when N < 16#0800 ->
<<0:5, Y:5, X:6>> = <<N:16>>,
<<34/utf8, 2#110:3, Y:5, 2#10:2, X:6, 34/utf8>>;
to_fake_utf(N, utf8) when N < 16#10000 ->
<<Z:4, Y:6, X:6>> = <<N:16>>,
<<34/utf8, 2#1110:4, Z:4, 2#10:2, Y:6, 2#10:2, X:6, 34/utf8>>;
to_fake_utf(N, utf8) ->
<<0:3, W:3, Z:6, Y:6, X:6>> = <<N:24>>,
<<34/utf8, 2#11110:5, W:3, 2#10:2, Z:6, 2#10:2, Y:6, 2#10:2, X:6, 34/utf8>>.
-endif.

View file

@ -1,500 +0,0 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_terms).
-export([json_to_term/2, term_to_json/2]).
-include("../include/jsx_common.hrl").
-record(decoder_opts, {
strict = false,
encoding = auto,
repeatable_keys = true
}).
-spec json_to_term(JSON::binary(), OptsList::decoder_opts()) ->
jsx_term() | {jsx, incomplete, fun()}.
json_to_term(JSON, OptsList) ->
Opts = parse_opts(OptsList, #decoder_opts{}),
P = jsx:decoder([{encoding, Opts#decoder_opts.encoding}]),
case Opts#decoder_opts.strict of
true -> collect_strict(P(JSON), [[]], Opts)
; false -> collect(P(JSON), [[]], Opts)
end.
%% the jsx formatter (pretty printer) can do most of the heavy lifting in
%% converting erlang terms to json strings
-record(encoder_opts, {
strict = false,
encoding = auto,
formatter_opts = []
}).
-spec term_to_json(JSON::jsx_term(), OptsList::encoder_opts()) ->
binary() | {jsx, incomplete, fun()}.
term_to_json(List, OptsList) ->
Opts = parse_opts(OptsList, #encoder_opts{}),
case Opts#encoder_opts.strict of
true when is_list(List) -> continue
; true -> erlang:error(badarg)
; false -> continue
end,
case term_to_events(List) of
L when is_tuple(L) ->
jsx:format(L, Opts#encoder_opts.formatter_opts)
; L when is_list(L) ->
jsx:format(lists:reverse(L), Opts#encoder_opts.formatter_opts)
end.
parse_opts([{strict, Val}|Rest], Opts = #decoder_opts{})
when Val =:= true; Val =:= false ->
parse_opts(Rest, Opts#decoder_opts{strict = Val});
parse_opts([strict|Rest], Opts = #decoder_opts{}) ->
parse_opts(Rest, Opts#decoder_opts{strict = true});
parse_opts([{strict, Val}|Rest], Opts = #encoder_opts{})
when Val =:= true; Val =:= false ->
parse_opts(Rest, Opts#encoder_opts{strict = Val});
parse_opts([strict|Rest], Opts = #encoder_opts{}) ->
parse_opts(Rest, Opts#encoder_opts{strict = true});
parse_opts([{encoding, Val}|Rest], Opts = #decoder_opts{})
when Val =:= auto; Val =:= utf8;
Val =:= utf16; Val =:= {utf16,little};
Val =:= utf32; Val =:= {utf32,little} ->
parse_opts(Rest, Opts#decoder_opts{encoding = Val});
parse_opts([encoding|Rest], Opts = #decoder_opts{}) ->
parse_opts(Rest, Opts#decoder_opts{encoding = auto});
parse_opts([{encoding, Val}|Rest], Opts = #encoder_opts{})
when Val =:= auto; Val =:= utf8;
Val =:= utf16; Val =:= {utf16,little};
Val =:= utf32; Val =:= {utf32,little} ->
parse_opts(Rest, Opts#encoder_opts{encoding = Val});
parse_opts([encoding|Rest], Opts = #encoder_opts{}) ->
parse_opts(Rest, Opts#encoder_opts{encoding = auto});
parse_opts([{indent, Val}|Rest], Opts = #encoder_opts{formatter_opts = F})
when is_integer(Val) ->
parse_opts(Rest, Opts#encoder_opts{formatter_opts = [{indent, Val}] ++ F});
parse_opts([indent|Rest], Opts = #encoder_opts{formatter_opts = F}) ->
parse_opts(Rest, Opts#encoder_opts{formatter_opts = [{indent, 1}] ++ F});
parse_opts([{space, Val}|Rest], Opts = #encoder_opts{formatter_opts = F})
when is_integer(Val) ->
parse_opts(Rest, Opts#encoder_opts{formatter_opts = [{space, Val}] ++ F});
parse_opts([space|Rest], Opts = #encoder_opts{formatter_opts = F}) ->
parse_opts(Rest, Opts#encoder_opts{formatter_opts = [{space, 1}] ++ F});
parse_opts([{output_encoding, Val}|Rest], Opts = #encoder_opts{formatter_opts = F})
when Val =:= utf8;
Val =:= utf16; Val =:= {utf16,little};
Val =:= utf32; Val =:= {utf32,little} ->
parse_opts(Rest, Opts#encoder_opts{formatter_opts = [{output_encoding, Val}] ++ F});
parse_opts([{repeatable_keys, Val}|Rest], Opts = #decoder_opts{})
when Val =:= true; Val =:= false ->
parse_opts(Rest, Opts#decoder_opts{repeatable_keys = Val});
parse_opts([repeatable_keys|Rest], Opts = #decoder_opts{}) ->
parse_opts(Rest, Opts#decoder_opts{repeatable_keys = true});
parse_opts([], Opts) ->
Opts.
%% ensure the first jsx event we get is start_object or start_array when running
%% in strict mode
collect_strict({jsx, [Start|Next], Next}, Acc, Opts)
when Start =:= start_object; Start =:= start_array ->
collect(Next, [[]|Acc], Opts);
collect_strict(_, _, _) -> erlang:error(badarg).
%% collect decoder events and convert to eep0018 format
collect({jsx, [Start|Next], _}, Acc, Opts)
when Start =:= start_object; Start =:= start_array ->
collect(Next, [[]|Acc], Opts);
collect({jsx, [Event, end_json], _}, _, Opts) ->
event(Event, Opts);
collect([Start|Next], Acc, Opts)
when Start =:= start_object; Start =:= start_array ->
collect(Next, [[]|Acc], Opts);
%% special case for empty object
collect([end_object|Next], [[], Parent|Rest], Opts) when is_list(Parent) ->
collect(Next, [[[{}]] ++ Parent] ++ Rest, Opts);
%% reverse the array/object accumulator before prepending it to it's parent
collect([end_object|Next], [Current, Parent|Rest], Opts)
when is_list(Parent) ->
collect(Next, [[lists:reverse(Current)] ++ Parent] ++ Rest, Opts);
collect([end_array|Next], [Current, Parent|Rest], Opts)
when is_list(Parent) ->
collect(Next, [[lists:reverse(Current)] ++ Parent] ++ Rest, Opts);
%% special case for empty object
collect([end_object|Next], [[], Key, Parent|Rest], Opts) ->
collect(Next, [[{Key, [{}]}] ++ Parent] ++ Rest, Opts);
collect([End|Next], [Current, Key, Parent|Rest], Opts)
when End =:= end_object; End =:= end_array ->
collect(Next, [[{Key, lists:reverse(Current)}] ++ Parent] ++ Rest, Opts);
collect([end_json], [[Acc]], _Opts) ->
Acc;
%% key can only be emitted inside of a json object, so just insert it directly
%% into the head of the accumulator and deal with it when we receive it's
%% paired value
collect([{key, _} = PreKey|Next], Acc, Opts) ->
Key = event(PreKey, Opts),
collect(Next, [Key] ++ Acc, Opts);
%% if our returned event is {jsx, incomplete, ...} try to force end and return
%% the Event if one is returned, else just return {incomplete, More/1}
collect({jsx, incomplete, More}, _Acc, Opts) ->
case More(end_stream) of
{jsx, [Event, end_json], _Next} -> event(Event, Opts)
; _ -> {incomplete, More}
end;
%% check acc to see if we're inside an object or an array. because inside an
%% object context the events that fall this far are always preceded by a key
%% (which are binaries or atoms), if Current is a list, we're inside an array,
%% else, an object
collect([Event|Next], [Current|Rest], Opts) when is_list(Current) ->
collect(Next, [[event(Event, Opts)] ++ Current] ++ Rest, Opts);
%% delete any prior uses of current key
collect([Event|Next], [Key, Current|Rest], Opts=#decoder_opts{repeatable_keys=false}) ->
case proplists:is_defined(Key, Current) of
true ->
Acc = proplists:delete(Key, Current),
collect(Next,
[[{Key, event(Event, Opts)}] ++ Acc] ++ Rest,
Opts
)
; _ ->
collect(Next,
[[{Key, event(Event, Opts)}] ++ Current] ++ Rest,
Opts
)
end;
collect([Event|Next], [Key, Current|Rest], Opts) ->
collect(Next, [[{Key, event(Event, Opts)}] ++ Current] ++ Rest, Opts);
%% any other event is an error
collect(_, _, _) -> erlang:error(badarg).
%% helper functions for converting jsx events to term format
event({string, String}, _Opts) -> unicode:characters_to_binary(String);
event({key, Key}, _Opts) -> unicode:characters_to_binary(Key);
event({integer, Integer}, _Opts) -> Integer;
event({float, Float}, _Opts) -> Float;
event({literal, Literal}, _Opts) -> Literal.
%% convert term format representation to jsx events. note special casing for the
%% empty object
term_to_events([{}]) ->
[end_object, start_object];
term_to_events([First|_] = List) when is_tuple(First) ->
proplist_to_events(List, [start_object]);
term_to_events(List) when is_list(List) ->
list_to_events(List, [start_array]);
term_to_events(Term) ->
[Res] = term_to_event(Term),
Res.
proplist_to_events([{Key, Term}|Rest], Acc) ->
Event = term_to_event(Term),
EncodedKey = key_to_event(Key),
proplist_to_events(Rest, Event ++ EncodedKey ++ Acc);
proplist_to_events([], Acc) ->
[end_object] ++ Acc;
proplist_to_events(_, _) ->
erlang:error(badarg).
list_to_events([Term|Rest], Acc) ->
list_to_events(Rest, term_to_event(Term) ++ Acc);
list_to_events([], Acc) ->
[end_array] ++ Acc.
term_to_event(List) when is_list(List) ->
term_to_events(List);
term_to_event(Float) when is_float(Float) ->
[{float, Float}];
term_to_event(Integer) when is_integer(Integer) ->
[{integer, Integer}];
term_to_event(String) when is_binary(String) ->
[{string, json_escape(String)}];
term_to_event(true) -> [{literal, true}];
term_to_event(false) -> [{literal, false}];
term_to_event(null) -> [{literal, null}];
term_to_event(_) -> erlang:error(badarg).
key_to_event(Key) when is_binary(Key) ->
[{key, json_escape(Key)}].
%% json string escaping, for utf8 binaries. escape the json control sequences to
%% their json equivalent, escape other control characters to \uXXXX sequences,
%% everything else should be a legal json string component
json_escape(String) ->
json_escape(String, <<>>).
%% double quote
json_escape(<<$\", Rest/binary>>, Acc) ->
json_escape(Rest, <<Acc/binary, $\\, $\">>);
%% backslash \ reverse solidus
json_escape(<<$\\, Rest/binary>>, Acc) ->
json_escape(Rest, <<Acc/binary, $\\, $\\>>);
%% backspace
json_escape(<<$\b, Rest/binary>>, Acc) ->
json_escape(Rest, <<Acc/binary, $\\, $b>>);
%% form feed
json_escape(<<$\f, Rest/binary>>, Acc) ->
json_escape(Rest, <<Acc/binary, $\\, $f>>);
%% newline
json_escape(<<$\n, Rest/binary>>, Acc) ->
json_escape(Rest, <<Acc/binary, $\\, $n>>);
%% cr
json_escape(<<$\r, Rest/binary>>, Acc) ->
json_escape(Rest, <<Acc/binary, $\\, $r>>);
%% tab
json_escape(<<$\t, Rest/binary>>, Acc) ->
json_escape(Rest, <<Acc/binary, $\\, $t>>);
%% other control characters
json_escape(<<C/utf8, Rest/binary>>, Acc) when C >= 0, C < $\s ->
json_escape(Rest, <<Acc/binary, (json_escape_sequence(C))/binary>>);
%% escape u+2028 and u+2029 to avoid problems with jsonp
json_escape(<<C/utf8, Rest/binary>>, Acc) when C == 16#2028; C == 16#2029 ->
json_escape(Rest, <<Acc/binary, (json_escape_sequence(C))/binary>>);
%% any other legal codepoint
json_escape(<<C/utf8, Rest/binary>>, Acc) ->
json_escape(Rest, <<Acc/binary, C/utf8>>);
json_escape(<<>>, Acc) ->
Acc;
json_escape(_, _) ->
erlang:error(badarg).
%% convert a codepoint to it's \uXXXX equiv.
json_escape_sequence(X) ->
<<A:4, B:4, C:4, D:4>> = <<X:16>>,
<<$\\, $u, (to_hex(A)), (to_hex(B)), (to_hex(C)), (to_hex(D))>>.
to_hex(15) -> $f;
to_hex(14) -> $e;
to_hex(13) -> $d;
to_hex(12) -> $c;
to_hex(11) -> $b;
to_hex(10) -> $a;
to_hex(X) -> X + $0.
%% eunit tests
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").
decode_test_() ->
[
{"empty object", ?_assert(json_to_term(<<"{}">>, []) =:= [{}])},
{"empty array", ?_assert(json_to_term(<<"[]">>, []) =:= [])},
{"simple object",
?_assert(json_to_term(
<<"{\"a\": true, \"b\": true, \"c\": true}">>, []
) =:= [{<<"a">>, true}, {<<"b">>, true}, {<<"c">>, true}]
)
},
{"simple array",
?_assert(json_to_term(<<"[true,true,true]">>,
[]
) =:= [true, true, true]
)
},
{"nested structures",
?_assert(json_to_term(
<<"{\"x\":[{\"x\":[{}, {}],\"y\":{}}, []],\"y\":{}}">>, []
) =:= [{<<"x">>,
[[{<<"x">>, [[{}], [{}]]}, {<<"y">>, [{}]}],[]]},
{<<"y">>, [{}]}
]
)
},
{"numbers",
?_assert(json_to_term(
<<"[-100000000.0, -1, 0.0, 0, 1, 100000000, 10000000.0]">>,
[]
) =:= [-100000000.0, -1, 0.0, 0, 1, 100000000, 10000000.0]
)
},
{"strings",
?_assert(json_to_term(<<"[\"a string\"]">>,
[]
) =:= [<<"a string">>])
},
{"literals",
?_assert(json_to_term(<<"[true,false,null]">>,
[]
) =:= [true,false,null]
)
},
{"naked true",
?_assert(json_to_term(<<"true">>, []) =:= true)
},
{"naked short number",
?_assert(json_to_term(<<"1">>, []) =:= 1)
},
{"naked float", ?_assert(json_to_term(<<"1.0">>, []) =:= 1.0)},
{"naked string",
?_assert(json_to_term(<<"\"hello world\"">>,
[]
) =:= <<"hello world">>
)
},
{"strict mode", ?_assertError(badarg, json_to_term(<<"1.0">>,
[{strict, true}]
)
)}
].
encode_test_() ->
[
{"empty object", ?_assert(term_to_json([{}], []) =:= <<"{}">>)},
{"empty array", ?_assert(term_to_json([], []) =:= <<"[]">>)},
{"simple object",
?_assert(term_to_json([{<<"a">>, true}, {<<"b">>, true}],
[]
) =:= <<"{\"a\":true,\"b\":true}">>
)
},
{"simple array",
?_assert(term_to_json([true, true, true],
[]
) =:= <<"[true,true,true]">>
)
},
{"nested structures",
?_assert(term_to_json(
[{<<"x">>,
[[{<<"x">>, [[{}], [{}]]}, {<<"y">>, [{}]}],[]]},
{<<"y">>, [{}]}],
[]
) =:= <<"{\"x\":[{\"x\":[{},{}],\"y\":{}},[]],\"y\":{}}">>
)
},
{"numbers",
?_assert(term_to_json(
[-10000000000.0, -1, 0.0, 0, 1, 10000000, 1000000000.0],
[]
) =:= <<"[-1.0e10,-1,0.0,0,1,10000000,1.0e9]">>
)
},
{"strings",
?_assert(term_to_json([<<"a string">>],
[]
) =:= <<"[\"a string\"]">>
)
},
{"literals",
?_assert(term_to_json([true,false,null],
[]
) =:= <<"[true,false,null]">>
)
},
{"naked true",
?_assert(term_to_json(true, []) =:= <<"true">>)
},
{"naked number",
?_assert(term_to_json(1, []) =:= <<"1">>)
},
{"float", ?_assert(term_to_json(1.0, []) =:= <<"1.0">>)},
{"naked string",
?_assert(term_to_json(<<"hello world">>, [])
=:= <<"\"hello world\"">>
)
},
{"strict mode", ?_assertError(badarg, term_to_json(true,
[{strict, true}]
)
)}
].
repeated_keys_test_() ->
[
{"simple repeated key",
?_assert(json_to_term(<<"{\"a\":false,\"a\":true}">>, [{repeatable_keys, false}])
=:= [{<<"a">>, true}]
)
},
{"simple repeated key - allowed",
?_assert(json_to_term(<<"{\"a\":false,\"a\":true}">>, [])
=:= [{<<"a">>, false}, {<<"a">>, true}]
)
},
{"nested repeated key",
?_assert(json_to_term(
<<"[{\"a\":false,\"a\":true},{\"a\":false,\"a\":true}]">>,
[{repeatable_keys, false}])
=:= [[{<<"a">>, true}], [{<<"a">>, true}]]
)
},
{"nested repeated key - allowed",
?_assert(json_to_term(<<"[{\"a\":false,\"a\":true},{\"a\":false,\"a\":true}]">>, [])
=:= [[{<<"a">>, false}, {<<"a">>, true}], [{<<"a">>, false}, {<<"a">>, true}]]
)
},
{"multiple keys",
?_assert(json_to_term(<<"{\"a\":4,\"a\":3,\"a\":2,\"a\":1}">>, [{repeatable_keys, false}])
=:= [{<<"a">>, 1}]
)
},
{"multiple keys",
?_assert(json_to_term(<<"{\"a\":4,\"a\":3,\"a\":2,\"a\":1}">>, [])
=:= [{<<"a">>, 4}, {<<"a">>, 3}, {<<"a">>, 2}, {<<"a">>, 1}]
)
}
].
escape_test_() ->
[
{"json string escaping",
?_assert(json_escape(
<<"\"\\\b\f\n\r\t">>
) =:= <<"\\\"\\\\\\b\\f\\n\\r\\t">>
)
},
{"json string hex escape",
?_assert(json_escape(
<<1, 2, 3, 11, 26, 30, 31>>
) =:= <<"\\u0001\\u0002\\u0003\\u000b\\u001a\\u001e\\u001f">>
)
},
{"jsonp protection",
?_assert(json_escape(
<<226, 128, 168, 226, 128, 169>>
) =:= <<"\\u2028\\u2029">>
)
}
].
-endif.

168
src/jsx_tokenizer.erl Normal file
View file

@ -0,0 +1,168 @@
%% The MIT License
%% Copyright (c) 2011 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_tokenizer).
-include("../include/jsx_types.hrl").
-export([tokenizer/1]).
-spec tokenizer(OptsList::jsx_opts()) -> jsx_tokenizer().
tokenizer(OptsList) ->
fun(Forms) -> start(Forms, [], [], parse_opts(OptsList)) end.
-include("../include/jsx_opts.hrl").
-include("../include/jsx_tokenizer.hrl").
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").
encode(Terms) ->
try case (jsx:scanner([]))(Terms) of
{ok, Terms, _} ->
true
%% matches [foo, end_json], aka naked terms
; {ok, [Terms, end_json], _} ->
true
end
catch
error:badarg -> false
end.
encode_test_() ->
[
{"empty object", ?_assert(encode([start_object, end_object, end_json]))},
{"empty array", ?_assert(encode([start_array, end_array, end_json]))},
{"nested empty objects", ?_assert(encode([start_object,
{key, "empty object"},
start_object,
{key, "empty object"},
start_object,
end_object,
end_object,
end_object,
end_json
]))},
{"nested empty arrays", ?_assert(encode([start_array,
start_array,
start_array,
end_array,
end_array,
end_array,
end_json
]))},
{"simple object", ?_assert(encode([start_object,
{key, "a"},
{string, "hello"},
{key, "b"},
{integer, 1},
{key, "c"},
{float, 1.0},
{key, "d"},
{literal, true},
end_object,
end_json
]))},
{"simple array", ?_assert(encode([start_array,
{string, "hello"},
{integer, 1},
{float, 1.0},
{literal, true},
end_array,
end_json
]))},
{"unbalanced array", ?_assertNot(encode([start_array,
end_array,
end_array,
end_json
]))},
{"naked string", ?_assert(encode({string, "hello"}))},
{"naked literal", ?_assert(encode({literal, true}))},
{"naked integer", ?_assert(encode({integer, 1}))},
{"naked float", ?_assert(encode({float, 1.0}))}
].
binary_escape_test_() ->
[
{"json string escaping",
?_assert(json_escape(
<<"\"\\\b\f\n\r\t">>, #opts{}
) =:= <<"\\\"\\\\\\b\\f\\n\\r\\t">>
)
},
{"json string hex escape",
?_assert(json_escape(
<<1, 2, 3, 11, 26, 30, 31>>, #opts{}
) =:= <<"\\u0001\\u0002\\u0003\\u000b\\u001a\\u001e\\u001f">>
)
},
{"jsonp protection",
?_assert(json_escape(
<<226, 128, 168, 226, 128, 169>>, #opts{}
) =:= <<"\\u2028\\u2029">>
)
},
{"microsoft i hate your date format",
?_assert(json_escape(<<"/Date(1303502009425)/">>,
#opts{escape_forward_slash=true}
) =:= <<"\\/Date(1303502009425)\\/">>
)
}
].
string_escape_test_() ->
[
{"json string escaping",
?_assert(json_escape(
"\"\\\b\f\n\r\t", #opts{}
) =:= "\\\"\\\\\\b\\f\\n\\r\\t"
)
},
{"json string hex escape",
?_assert(json_escape(
[1, 2, 3, 11, 26, 30, 31], #opts{}
) =:= "\\u0001\\u0002\\u0003\\u000b\\u001a\\u001e\\u001f"
)
},
{"jsonp protection",
?_assert(json_escape(
[16#2028, 16#2029], #opts{}
) =:= "\\u2028\\u2029"
)
},
{"microsoft i hate your date format",
?_assert(json_escape("/Date(1303502009425)/",
#opts{escape_forward_slash=true}
) =:= "\\/Date(1303502009425)\\/"
)
}
].
-endif.

View file

@ -1,35 +0,0 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_utf16le).
-define(utf16le, true).
-include("../include/jsx_common.hrl").
-include("../include/jsx_decoder.hrl").
%% i've noticed you've noticed that there's no source here. very astute. see
%% jsx_decoder_template.hrl in the include directory. any mofications to this
%% module should be made there, but keep in mind other modules also include
%% that header

View file

@ -1,35 +0,0 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_utf32).
-define(utf32, true).
-include("../include/jsx_common.hrl").
-include("../include/jsx_decoder.hrl").
%% i've noticed you've noticed that there's no source here. very astute. see
%% jsx_decoder_template.hrl in the include directory. any mofications to this
%% module should be made there, but keep in mind other modules also include
%% that header

View file

@ -1,35 +0,0 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_utf32le).
-define(utf32le, true).
-include("../include/jsx_common.hrl").
-include("../include/jsx_decoder.hrl").
%% i've noticed you've noticed that there's no source here. very astute. see
%% jsx_decoder_template.hrl in the include directory. any mofications to this
%% module should be made there, but keep in mind other modules also include
%% that header

View file

@ -1,33 +0,0 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_utf8).
-include("../include/jsx_common.hrl").
-include("../include/jsx_decoder.hrl").
%% i've noticed you've noticed that there's no source here. very astute. see
%% jsx_decoder_template.hrl in the include directory. any mofications to this
%% module should be made there, but keep in mind other modules also include
%% that header

View file

@ -23,21 +23,7 @@
-module(jsx_utils).
-export([nice_decimal/1, detect_encoding/1, detect_encoding/2, collect/1]).
-spec collect(F::function()) -> {jsx, list(), function()}.
collect(F) when is_function(F) ->
collect(F(), []).
collect({error, _}, _) -> {error, badarg};
collect({jsx, incomplete, More}, Acc) ->
{jsx, incomplete, fun(Stream) -> collect(More(Stream), Acc) end};
collect({jsx, end_json, Next}, Acc) ->
{jsx, lists:reverse([end_json] ++ Acc), Next};
collect({jsx, Event, Next}, Acc) -> collect(Next(), [Event] ++ Acc).
-export([nice_decimal/1]).
%% conversion of floats to 'nice' decimal output. erlang's float implementation
@ -179,102 +165,6 @@ to_ascii(15) -> "f";
to_ascii(X) -> [X + 48]. %% ascii "1" is [49], "2" is [50], etc...
%% encoding detection
%% first check to see if there's a bom, if not, use the rfc4627 method for
%% determining encoding. this function makes some assumptions about the
%% validity of the stream which may delay failure later than if an encoding is
%% explicitly provided
detect_encoding(OptsList) ->
fun(Stream) -> detect_encoding(Stream, OptsList) end.
%% utf8 bom detection
detect_encoding(<<16#ef, 16#bb, 16#bf, Rest/binary>>, Opts) ->
(jsx_utf8:decoder(Opts))(Rest);
%% utf32-little bom detection (this has to come before utf16-little or it'll
%% match that)
detect_encoding(<<16#ff, 16#fe, 0, 0, Rest/binary>>, Opts) ->
(jsx_utf32le:decoder(Opts))(Rest);
%% utf16-big bom detection
detect_encoding(<<16#fe, 16#ff, Rest/binary>>, Opts) ->
(jsx_utf16:decoder(Opts))(Rest);
%% utf16-little bom detection
detect_encoding(<<16#ff, 16#fe, Rest/binary>>, Opts) ->
(jsx_utf16le:decoder(Opts))(Rest);
%% utf32-big bom detection
detect_encoding(<<0, 0, 16#fe, 16#ff, Rest/binary>>, Opts) ->
(jsx_utf32:decoder(Opts))(Rest);
%% utf32-little null order detection
detect_encoding(<<X, 0, 0, 0, _Rest/binary>> = JSON, Opts) when X =/= 0 ->
(jsx_utf32le:decoder(Opts))(JSON);
%% utf32-big null order detection
detect_encoding(<<0, 0, 0, X, _Rest/binary>> = JSON, Opts) when X =/= 0 ->
(jsx_utf32:decoder(Opts))(JSON);
%% utf16-little null order detection
detect_encoding(<<X, 0, _, _, _Rest/binary>> = JSON, Opts) when X =/= 0 ->
(jsx_utf16le:decoder(Opts))(JSON);
%% utf16-big null order detection
detect_encoding(<<0, X, _, _, _Rest/binary>> = JSON, Opts) when X =/= 0 ->
(jsx_utf16:decoder(Opts))(JSON);
%% utf8 null order detection
detect_encoding(<<X, Y, _Rest/binary>> = JSON, Opts) when X =/= 0, Y =/= 0 ->
(jsx_utf8:decoder(Opts))(JSON);
%% a problem, to autodetect naked single digits' encoding, there is not enough
%% data to conclusively determine the encoding correctly. below is an attempt
%% to solve the problem
detect_encoding(<<X>>, Opts) when X =/= 0 ->
{jsx, incomplete,
fun(end_stream) ->
try
{jsx, incomplete, Next} = (jsx_utf8:decoder(Opts))(<<X>>),
Next(end_stream)
catch
error:function_clause -> {error, {badjson, <<X>>}}
; error:{badmatch, _} -> {error, {badjson, <<X>>}}
end
; (Stream) -> detect_encoding(<<X, Stream/binary>>, Opts)
end
};
detect_encoding(<<0, X>>, Opts) when X =/= 0 ->
{jsx, incomplete,
fun(end_stream) ->
try
{jsx, incomplete, Next}
= (jsx_utf16:decoder(Opts))(<<0, X>>),
Next(end_stream)
catch
error:function_clause -> {error, {badjson, <<0, X>>}}
; error:{badmatch, _} -> {error, {badjson, <<X>>}}
end
; (Stream) -> detect_encoding(<<0, X, Stream/binary>>, Opts)
end
};
detect_encoding(<<X, 0>>, Opts) when X =/= 0 ->
{jsx, incomplete,
fun(end_stream) ->
try
{jsx, incomplete, Next}
= (jsx_utf16le:decoder(Opts))(<<X, 0>>),
Next(end_stream)
catch
error:function_clause -> {error, {badjson, <<X, 0>>}}
; error:{badmatch, _} -> {error, {badjson, <<X>>}}
end
; (Stream) -> detect_encoding(<<X, 0, Stream/binary>>, Opts)
end
};
%% not enough input, request more
detect_encoding(Bin, Opts) ->
{jsx, incomplete,
fun(end_stream) -> {error, {badjson, Bin}}
; (Stream) -> detect_encoding(<<Bin/binary, Stream/binary>>, Opts)
end
}.
%% eunit tests
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").

View file

@ -1,234 +0,0 @@
%% The MIT License
%% Copyright (c) 2010 Alisdair Sullivan <alisdairsullivan@yahoo.ca>
%% Permission is hereby granted, free of charge, to any person obtaining a copy
%% of this software and associated documentation files (the "Software"), to deal
%% in the Software without restriction, including without limitation the rights
%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%% copies of the Software, and to permit persons to whom the Software is
%% furnished to do so, subject to the following conditions:
%% The above copyright notice and this permission notice shall be included in
%% all copies or substantial portions of the Software.
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%% THE SOFTWARE.
-module(jsx_verify).
-export([is_json/2]).
-include("../include/jsx_common.hrl").
-record(verify_opts, {
repeated_keys = true,
naked_values = true
}).
-spec is_json(JSON::binary(), Opts::verify_opts()) -> true | false
; (Terms::list(jsx_encodeable()), Opts::verify_opts()) -> true | false.
is_json(JSON, OptsList) when is_binary(JSON) ->
F = jsx:decoder(extract_parser_opts(OptsList)),
verify(F(JSON), parse_opts(OptsList));
is_json(JSON, OptsList) when is_list(JSON) ->
F = jsx:encoder(extract_parser_opts(OptsList)),
verify(F(JSON), parse_opts(OptsList)).
extract_parser_opts(Opts) ->
extract_parser_opts(Opts, []).
extract_parser_opts([], Acc) -> Acc;
extract_parser_opts([{K,V}|Rest], Acc) ->
case lists:member(K, [encoding]) of
true -> [{K,V}] ++ Acc
; false -> extract_parser_opts(Rest, Acc)
end;
extract_parser_opts([K|Rest], Acc) ->
case lists:member(K, [encoding]) of
true -> [K] ++ Acc
; false -> extract_parser_opts(Rest, Acc)
end.
parse_opts(Opts) -> parse_opts(Opts, #verify_opts{}).
parse_opts([{repeated_keys, Val}|Rest], Opts)
when Val =:= true; Val =:= false ->
parse_opts(Rest, Opts#verify_opts{repeated_keys = Val});
parse_opts([repeated_keys|Rest], Opts) ->
parse_opts(Rest, Opts#verify_opts{repeated_keys = true});
parse_opts([{naked_values, Val}|Rest], Opts)
when Val =:= true; Val =:= false ->
parse_opts(Rest, Opts#verify_opts{naked_values = Val});
parse_opts([naked_values|Rest], Opts) ->
parse_opts(Rest, Opts#verify_opts{naked_values = true});
parse_opts([{encoding, _}|Rest], Opts) ->
parse_opts(Rest, Opts);
parse_opts([encoding|Rest], Opts) ->
parse_opts(Rest, Opts);
parse_opts([], Opts) ->
Opts.
verify({error, {badjson, _}}, _Opts) -> false;
verify({jsx, incomplete, More}, Opts) -> verify(More(end_stream), Opts);
verify({jsx, [First|Rest], _}, Opts=#verify_opts{naked_values=false}) ->
case First of
start_object -> verify(Rest, Opts, [])
; start_array -> verify(Rest, Opts, [])
; _ -> false
end;
verify({jsx, Terms, _}, Opts) -> verify(Terms, Opts, []).
verify([end_json], _Opts, _Keys) -> true;
%% allocate new key accumulator at start_object, discard it at end_object
verify([start_object|Rest], Opts=#verify_opts{repeated_keys=false}, Keys) ->
verify(Rest, Opts, [[]] ++ Keys);
verify([end_object|Rest], Opts=#verify_opts{repeated_keys=false}, [_|Keys]) ->
verify(Rest, Opts, Keys);
%% check to see if key has already been encountered, if not add it to the key
%% accumulator and continue, else return false
verify([{key, Key}|Rest], Opts=#verify_opts{repeated_keys=false}, [Current|Keys]) ->
case lists:member(Key, Current) of
true -> false
; false -> verify(Rest, Opts, [[Key] ++ Current] ++ Keys)
end;
verify([_|Rest], Opts, Keys) -> verify(Rest, Opts, Keys);
verify(_, _, _) -> false.
%% eunit tests
-ifdef(TEST).
-include_lib("eunit/include/eunit.hrl").
true_test_() ->
[
{"empty object", ?_assert(is_json(<<"{}">>, []) =:= true)},
{"empty array", ?_assert(is_json(<<"[]">>, []) =:= true)},
{"whitespace",
?_assert(is_json(<<" \n \t \r [true] \t \n\r ">>,
[]
) =:= true
)
},
{"nested terms",
?_assert(is_json(
<<"[{ \"x\": [ {}, {}, {} ], \"y\": [{}] }, {}, [[[]]]]">>,
[]
) =:= true
)
},
{"numbers",
?_assert(is_json(
<<"[ -1.0, -1, -0, 0, 1e-1, 1, 1.0, 1e1 ]">>,
[]
) =:= true
)
},
{"strings",
?_assert(is_json(
<<"[ \"a\", \"string\", \"in\", \"multiple\", \"acts\" ]">>,
[]
) =:= true
)
},
{"literals",
?_assert(is_json(<<"[ true, false, null ]">>, []) =:= true)
},
{"nested objects",
?_assert(is_json(<<"{\"key\": { \"key\": true}}">>, []) =:= true)
},
{"naked true", ?_assert(is_json(<<"true">>, []) =:= true)},
{"naked number", ?_assert(is_json(<<"1">>, []) =:= true)},
{"naked string",
?_assert(is_json(<<"\"i am not really json\"">>, []) =:= true)
}
].
false_test_() ->
[
{"unbalanced list", ?_assert(is_json(<<"[[[]]">>, []) =:= false)},
{"trailing comma",
?_assert(is_json(<<"[ true, false, null, ]">>, []) =:= false)
}
].
repeated_keys_test_() ->
[
{"repeated key forbidden",
?_assert(is_json(
<<"{\"key\": true, \"key\": true}">>,
[{repeated_keys, false}]
) =:= false
)
},
{"repeated key allowed",
?_assert(is_json(
<<"{\"key\": true, \"key\": true}">>,
[{repeated_keys, true}]
) =:= true
)
},
{"repeated key nested",
?_assert(is_json(
<<"{\"a\": {\"a\": {\"a\": true, \"a\":false}}}">>,
[{repeated_keys, false}]
) =:= false
)
}
].
naked_value_test_() ->
[
{"naked true",
?_assert(is_json(<<"true">>, []) =:= true)
},
{"naked number",
?_assert(is_json(<<"1">>, []) =:= true)
},
{"naked string",
?_assert(is_json(<<"\"i am not json\"">>, []) =:= true)
},
{"naked true",
?_assert(is_json(<<"true">>, [{naked_values, false}]) =:= false)
},
{"naked number",
?_assert(is_json(<<"1">>, [{naked_values, false}]) =:= false)
},
{"naked string",
?_assert(is_json(
<<"\"i am not json\"">>,
[{naked_values, false}]
) =:= false
)
}
].
terms_test_() ->
[
{"terms",
?_assert(is_json([start_object,
{key, <<"key">>},
{string, <<"value">>},
end_object
], []) =:= true
)}
].
-endif.