leveled/src/leveled_bookie.erl
2017-11-08 18:38:49 +00:00

1642 lines
67 KiB
Erlang

%% -------- Overview ---------
%%
%% The eleveleddb is based on the LSM-tree similar to leveldb, except that:
%% - Keys, Metadata and Values are not persisted together - the Keys and
%% Metadata are kept in a tree-based ledger, whereas the values are stored
%% only in a sequential Journal.
%% - Different file formats are used for Journal (based on DJ Bernstein
%% constant database), and the ledger (based on sst)
%% - It is not intended to be general purpose, but be primarily suited for
%% use as a Riak backend in specific circumstances (relatively large values,
%% and frequent use of iterators)
%% - The Journal is an extended nursery log in leveldb terms. It is keyed
%% on the sequence number of the write
%% - The ledger is a merge tree, where the key is the actaul object key, and
%% the value is the metadata of the object including the sequence number
%%
%%
%% -------- Actors ---------
%%
%% The store is fronted by a Bookie, who takes support from different actors:
%% - An Inker who persists new data into the journal, and returns items from
%% the journal based on sequence number
%% - A Penciller who periodically redraws the ledger, that associates keys with
%% sequence numbers and other metadata, as well as secondary keys (for index
%% queries)
%% - One or more Clerks, who may be used by either the inker or the penciller
%% to fulfill background tasks
%%
%% Both the Inker and the Penciller maintain a manifest of the files which
%% represent the current state of the Journal and the Ledger repsectively.
%% For the Inker the manifest maps ranges of sequence numbers to cdb files.
%% For the Penciller the manifest maps key ranges to files at each level of
%% the Ledger.
%%
-module(leveled_bookie).
-behaviour(gen_server).
-include("include/leveled.hrl").
-export([init/1,
handle_call/3,
handle_cast/2,
handle_info/2,
terminate/2,
code_change/3,
book_start/1,
book_start/4,
book_put/5,
book_put/6,
book_tempput/7,
book_delete/4,
book_get/3,
book_get/4,
book_head/3,
book_head/4,
book_returnfolder/2,
book_snapshot/4,
book_compactjournal/2,
book_islastcompactionpending/1,
book_close/1,
book_destroy/1]).
-export([get_opt/2,
get_opt/3,
empty_ledgercache/0,
loadqueue_ledgercache/1,
push_ledgercache/2,
snapshot_store/6,
fetch_value/2]).
-include_lib("eunit/include/eunit.hrl").
-define(CACHE_SIZE, 2500).
-define(JOURNAL_FP, "journal").
-define(LEDGER_FP, "ledger").
-define(SNAPSHOT_TIMEOUT, 300000).
-define(CACHE_SIZE_JITTER, 25).
-define(JOURNAL_SIZE_JITTER, 20).
-define(LONG_RUNNING, 80000).
-define(RECENT_AAE, false).
-define(COMPRESSION_METHOD, lz4).
-define(COMPRESSION_POINT, on_receipt).
-record(ledger_cache, {mem :: ets:tab(),
loader = leveled_tree:empty(?CACHE_TYPE)
:: tuple()|empty_cache,
load_queue = [] :: list(),
index = leveled_pmem:new_index(), % array or empty_index
min_sqn = infinity :: integer()|infinity,
max_sqn = 0 :: integer()}).
-record(state, {inker :: pid() | undefined,
penciller :: pid() | undefined,
cache_size :: integer() | undefined,
recent_aae :: false | #recent_aae{} | undefined,
ledger_cache = #ledger_cache{},
is_snapshot :: boolean() | undefined,
slow_offer = false :: boolean(),
put_timing :: tuple() | undefined,
get_timing :: tuple() | undefined}).
-type book_state() :: #state{}.
-type sync_mode() :: sync|none|riak_sync.
-type ledger_cache() :: #ledger_cache{}.
%%%============================================================================
%%% API
%%%============================================================================
-spec book_start(string(), integer(), integer(), sync_mode()) -> {ok, pid()}.
%% @doc Start a Leveled Key/Value store - limited options support.
%%
%% The most common startup parameters are extracted out from the options to
%% provide this startup method. This will start a KV store from the previous
%% store at root path - or an empty one if there is no store at the path.
%%
%% Fiddling with the LedgerCacheSize and JournalSize may improve performance,
%% but these are primarily exposed to support special situations (e.g. very
%% low memory installations), there should not be huge variance in outcomes
%% from modifying these numbers.
%%
%% The sync_strategy determines if the store is going to flush writes to disk
%% before returning an ack. There are three settings currrently supported:
%% - sync - sync to disk by passing the sync flag to the file writer (only
%% works in OTP 18)
%% - riak_sync - sync to disk by explicitly calling data_sync after the write
%% - none - leave it to the operating system to control flushing
%%
%% On startup the Bookie must restart both the Inker to load the Journal, and
%% the Penciller to load the Ledger. Once the Penciller has started, the
%% Bookie should request the highest sequence number in the Ledger, and then
%% and try and rebuild any missing information from the Journal.
%%
%% To rebuild the Ledger it requests the Inker to scan over the files from
%% the sequence number and re-generate the Ledger changes - pushing the changes
%% directly back into the Ledger.
book_start(RootPath, LedgerCacheSize, JournalSize, SyncStrategy) ->
book_start([{root_path, RootPath},
{cache_size, LedgerCacheSize},
{max_journalsize, JournalSize},
{sync_strategy, SyncStrategy}]).
-spec book_start(list(tuple())) -> {ok, pid()}.
%% @doc Start a Leveled Key/Value store - full options support.
%%
%% Allows an options proplists to be passed for setting options. There are
%% four primary additional options this allows over book_start/4:
%% - retain_strategy
%% - waste_retention_period
%% - compression_method
%% - compression_point
%%
%% Both of the first two options relate to compaction in the Journal. The
%% retain_strategy determines if a skinny record of the object should be
%% retained following compaction, and how that should be used when recovering
%% lost state in the Ledger.
%%
%% This is relevant to when Riak uses Leveled in that KeyChanges are presented
%% by the vnode to the backend as deltas. This means that if those key
%% changes do not remain recorded in the journal once the value has been
%% compacted - rebuilding the ledger from the Journal would lead to incorrect
%% index entries being present.
%%
%% Currently compacted records no longer in use are not removed but moved to
%% a journal_waste folder, and the waste_retention_period determines how long
%% this history should be kept for (for example to allow for it to be backed
%% up before deletion). If the waste_retention_period (in seconds) is
%% undefined, then there will be no holding of this waste - unused files will
%% be immediately deleted.
%%
%% Compression method and point allow Leveled to be switched from using bif
%% based compression (zlib) to suing nif based compression (lz4). The
%% compression point can be changed between on_receipt (all values are
%% compressed as they are received), to on_compact where values are originally
%% stored uncompressed (speeding PUT times), and are only compressed when
%% they are first subject to compaction
%%
%% TODO:
%% The reload_strategy is exposed as currently no firm decision has been made
%% about how recovery should work. For instance if we were to trust everything
%% as permanent in the Ledger once it is persisted, then there would be no
%% need to retain a skinny history of key changes in the Journal after
%% compaction. If, as an alternative we assume the Ledger is never permanent,
%% and retain the skinny hisory - then backups need only be made against the
%% Journal. The skinny history of key changes is primarily related to the
%% issue of supporting secondary indexes in Riak.
%%
%% These two strategies are referred to as recovr (assume we can recover any
%% deltas from a lost ledger and a lost history through resilience outside of
%% the store), or retain (retain a history of key changes, even when the object
%% value has been compacted). There is a third, unimplemented strategy, which
%% is recalc - which would require when reloading the Ledger from the Journal,
%% to recalculate the index changes based on the current state of the Ledger
%% and the object metadata.
book_start(Opts) ->
gen_server:start(?MODULE, [Opts], []).
-spec book_tempput(pid(), any(), any(), any(), list(), atom(), integer()) ->
ok|pause.
%% @doc Put an object with an expiry time
%%
%% Put an item in the store but with a Time To Live - the time when the object
%% should expire, in gregorian_seconds (add the required number of seconds to
%% leveled_codec:integer_time/1).
%%
%% There exists the possibility of per object expiry times, not just whole
%% store expiry times as has traditionally been the feature in Riak. Care
%% will need to be taken if implementing per-object times about the choice of
%% reload_strategy. If expired objects are to be compacted entirely, then the
%% history of KeyChanges will be lost on reload.
book_tempput(Pid, Bucket, Key, Object, IndexSpecs, Tag, TTL)
when is_integer(TTL) ->
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag, TTL).
%% @doc - Standard PUT
%%
%% A PUT request consists of
%% - A Primary Key and a Value
%% - IndexSpecs - a set of secondary key changes associated with the
%% transaction
%% - A tag indictaing the type of object. Behaviour for metadata extraction,
%% and ledger compaction will vary by type. There are three currently
%% implemented types i (Index), o (Standard), o_rkv (Riak). Keys added with
%% Index tags are not fetchable (as they will not be hashed), but are
%% extractable via range query.
%%
%% The Bookie takes the request and passes it first to the Inker to add the
%% request to the journal.
%%
%% The inker will pass the PK/Value/IndexSpecs to the current (append only)
%% CDB journal file to persist the change. The call should return either 'ok'
%% or 'roll'. -'roll' indicates that the CDB file has insufficient capacity for
%% this write, and a new journal file should be created (with appropriate
%% manifest changes to be made).
%%
%% The inker will return the SQN which the change has been made at, as well as
%% the object size on disk within the Journal.
%%
%% Once the object has been persisted to the Journal, the Ledger can be updated.
%% The Ledger is updated by the Bookie applying a function (extract_metadata/4)
%% to the Value to return the Object Metadata, a function to generate a hash
%% of the Value and also taking the Primary Key, the IndexSpecs, the Sequence
%% Number in the Journal and the Object Size (returned from the Inker).
%%
%% A set of Ledger Key changes are then generated and placed in the Bookie's
%% Ledger Key cache.
%%
%% The PUT can now be acknowledged. In the background the Bookie may then
%% choose to push the cache to the Penciller for eventual persistence within
%% the ledger. This push will either be acccepted or returned (if the
%% Penciller has a backlog of key changes). The back-pressure should lead to
%% the Bookie entering into a slow-offer status whereby the next PUT will be
%% acknowledged by a PAUSE signal - with the expectation that the this will
%% lead to a back-off behaviour.
book_put(Pid, Bucket, Key, Object, IndexSpecs) ->
book_put(Pid, Bucket, Key, Object, IndexSpecs, ?STD_TAG).
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag) ->
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag, infinity).
-spec book_put(pid(), any(), any(), any(), list(), atom(), infinity|integer())
-> ok|pause.
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag, TTL) ->
gen_server:call(Pid,
{put, Bucket, Key, Object, IndexSpecs, Tag, TTL},
infinity).
-spec book_delete(pid(), any(), any(), list()) -> ok|pause.
%% @doc
%%
%% A thin wrap around the put of a special tombstone object. There is no
%% immediate reclaim of space, simply the addition of a more recent tombstone.
book_delete(Pid, Bucket, Key, IndexSpecs) ->
book_put(Pid, Bucket, Key, delete, IndexSpecs, ?STD_TAG).
-spec book_get(pid(), any(), any(), atom()) -> {ok, any()}|not_found.
-spec book_head(pid(), any(), any(), atom()) -> {ok, any()}|not_found.
%% @doc - GET and HEAD requests
%%
%% The Bookie supports both GET and HEAD requests, with the HEAD request
%% returning only the metadata and not the actual object value. The HEAD
%% requets cna be serviced by reference to the Ledger Cache and the Penciller.
%%
%% GET requests first follow the path of a HEAD request, and if an object is
%% found, then fetch the value from the Journal via the Inker.
book_get(Pid, Bucket, Key, Tag) ->
gen_server:call(Pid, {get, Bucket, Key, Tag}, infinity).
book_head(Pid, Bucket, Key, Tag) ->
gen_server:call(Pid, {head, Bucket, Key, Tag}, infinity).
book_get(Pid, Bucket, Key) ->
book_get(Pid, Bucket, Key, ?STD_TAG).
book_head(Pid, Bucket, Key) ->
book_head(Pid, Bucket, Key, ?STD_TAG).
-spec book_returnfolder(pid(), tuple()) -> {async, fun()}.
%% @doc Snapshots/Clones
%%
%% If there is a snapshot request (e.g. to iterate over the keys) the Bookie
%% may request a clone of the Penciller, or clones of both the Penciller and
%% the Inker should values also need to be accessed. The snapshot clone is
%% made available through a "runner" - a new trasnportable PID through which
%% the previous state of the store can be queried. So, for example, a
%% riak_kv_vnode_worker in the pool could host the runner.
%%
%% The clone is seeded with the manifest SQN. The clone should be registered
%% with the real Inker/Penciller, so that the real Inker/Penciller may prevent
%% the deletion of files still in use by a snapshot clone.
%%
%% Iterators should de-register themselves from the Penciller on completion.
%% Iterators should be automatically release after a timeout period. A file
%% can only be deleted from the Ledger if it is no longer in the manifest, and
%% there are no registered iterators from before the point the file was
%% removed from the manifest.
%%
%% Clones are simply new gen_servers with copies of the relevant
%% StateData.
%%
%% There are a series of specific folders implemented that provide pre-canned
%% snapshot functionality, more folders can be seen in the get_runner/2
%% function:
%%
%% {bucket_stats, Bucket} -> return a key count and total object size within
%% a bucket
%% {riakbucket_stats, Bucket} -> as above, but for buckets with the Riak Tag
%% {binary_bucketlist, Tag, {FoldKeysFun, Acc}} -> if we assume buckets and
%% keys are binaries, provides a fast bucket list function
%% {index_query,
%% Constraint,
%% {FoldKeysFun, Acc},
%% {IdxField, StartValue, EndValue},
%% {ReturnTerms, TermRegex}} -> secondray index query
%% {keylist, Tag, {FoldKeysFun, Acc}} -> list all keys with tag
%% {keylist, Tag, Bucket, {FoldKeysFun, Acc}} -> list all keys within given
%% bucket
%% {foldobjects_bybucket, Tag, Bucket, FoldObjectsFun} -> fold over all objects
%% in a given bucket
%% {foldobjects_byindex,
%% Tag,
%% Bucket,
%% {Field, FromTerm, ToTerm},
%% FoldObjectsFun} -> fold over all objects with an entry in a given
%% range on a given index
book_returnfolder(Pid, RunnerType) ->
gen_server:call(Pid, {return_runner, RunnerType}, infinity).
-spec book_snapshot(pid(),
store|ledger,
tuple()|undefined,
boolean()|undefined) -> {ok, pid(), pid()|null}.
%% @doc create a snapshot of the store
%%
%% Snapshot can be based on a pre-defined query (which will be used to filter
%% caches prior to copying for the snapshot), and can be defined as long
%% running to avoid timeouts (snapshots are generally expected to be required
%% for < 60s)
book_snapshot(Pid, SnapType, Query, LongRunning) ->
gen_server:call(Pid, {snapshot, SnapType, Query, LongRunning}, infinity).
-spec book_compactjournal(pid(), integer()) -> ok.
-spec book_islastcompactionpending(pid()) -> boolean().
%% @doc Call for compaction of the Journal
%%
%% the scheduling of Journla compaction is called externally, so it is assumed
%% in Riak it will be triggered by a vnode callback.
book_compactjournal(Pid, Timeout) ->
gen_server:call(Pid, {compact_journal, Timeout}, infinity).
%% @doc Check on progress of the last compaction
book_islastcompactionpending(Pid) ->
gen_server:call(Pid, confirm_compact, infinity).
-spec book_close(pid()) -> ok.
-spec book_destroy(pid()) -> ok.
%% @doc Clean shutdown
%%
%% A clean shutdown will persist all the information in the Penciller memory
%% before closing, so shutdown is not instantaneous.
book_close(Pid) ->
gen_server:call(Pid, close, infinity).
%% @doc Close and clean-out files
book_destroy(Pid) ->
gen_server:call(Pid, destroy, infinity).
%%%============================================================================
%%% gen_server callbacks
%%%============================================================================
init([Opts]) ->
leveled_rand:seed(),
case get_opt(snapshot_bookie, Opts) of
undefined ->
% Start from file not snapshot
{InkerOpts, PencillerOpts} = set_options(Opts),
CacheJitter = ?CACHE_SIZE div (100 div ?CACHE_SIZE_JITTER),
CacheSize = get_opt(cache_size, Opts, ?CACHE_SIZE)
+ erlang:phash2(self()) rem CacheJitter,
RecentAAE =
case get_opt(recent_aae, Opts, ?RECENT_AAE) of
false ->
false;
{FilterType, BucketList, LimitMinutes, UnitMinutes} ->
#recent_aae{filter = FilterType,
buckets = BucketList,
limit_minutes = LimitMinutes,
unit_minutes = UnitMinutes}
end,
{Inker, Penciller} =
startup(InkerOpts, PencillerOpts, RecentAAE),
NewETS = ets:new(mem, [ordered_set]),
leveled_log:log("B0001", [Inker, Penciller]),
{ok, #state{inker=Inker,
penciller=Penciller,
cache_size=CacheSize,
recent_aae=RecentAAE,
ledger_cache=#ledger_cache{mem = NewETS},
is_snapshot=false}};
Bookie ->
{ok, Penciller, Inker} =
book_snapshot(Bookie, store, undefined, true),
leveled_log:log("B0002", [Inker, Penciller]),
{ok, #state{penciller=Penciller,
inker=Inker,
is_snapshot=true}}
end.
handle_call({put, Bucket, Key, Object, IndexSpecs, Tag, TTL}, From, State) ->
LedgerKey = leveled_codec:to_ledgerkey(Bucket, Key, Tag),
SW = os:timestamp(),
{ok, SQN, ObjSize} = leveled_inker:ink_put(State#state.inker,
LedgerKey,
Object,
{IndexSpecs, TTL}),
T0 = timer:now_diff(os:timestamp(), SW),
Changes = preparefor_ledgercache(no_type_assigned,
LedgerKey,
SQN,
Object,
ObjSize,
{IndexSpecs, TTL},
State#state.recent_aae),
Cache0 = addto_ledgercache(Changes, State#state.ledger_cache),
T1 = timer:now_diff(os:timestamp(), SW) - T0,
PutTimes = leveled_log:put_timing(bookie, State#state.put_timing, T0, T1),
% If the previous push to memory was returned then punish this PUT with a
% delay. If the back-pressure in the Penciller continues, these delays
% will beocme more frequent
case State#state.slow_offer of
true ->
gen_server:reply(From, pause);
false ->
gen_server:reply(From, ok)
end,
maybe_longrunning(SW, overall_put),
case maybepush_ledgercache(State#state.cache_size,
Cache0,
State#state.penciller) of
{ok, NewCache} ->
{noreply, State#state{ledger_cache=NewCache,
put_timing=PutTimes,
slow_offer=false}};
{returned, NewCache} ->
{noreply, State#state{ledger_cache=NewCache,
put_timing=PutTimes,
slow_offer=true}}
end;
handle_call({get, Bucket, Key, Tag}, _From, State) ->
LedgerKey = leveled_codec:to_ledgerkey(Bucket, Key, Tag),
SWh = os:timestamp(),
case fetch_head(LedgerKey,
State#state.penciller,
State#state.ledger_cache) of
not_present ->
GT0 = leveled_log:get_timing(State#state.get_timing,
SWh,
head_not_present),
{reply, not_found, State#state{get_timing=GT0}};
Head ->
GT0 = leveled_log:get_timing(State#state.get_timing,
SWh,
head_found),
SWg = os:timestamp(),
{Seqn, Status, _MH, _MD} = leveled_codec:striphead_to_details(Head),
case Status of
tomb ->
{reply, not_found, State};
{active, TS} ->
Active = TS >= leveled_codec:integer_now(),
Object = fetch_value(State#state.inker, {LedgerKey, Seqn}),
GT1 = leveled_log:get_timing(GT0, SWg, fetch),
case {Active, Object} of
{_, not_present} ->
{reply, not_found, State#state{get_timing=GT1}};
{true, Object} ->
{reply, {ok, Object}, State#state{get_timing=GT1}};
_ ->
{reply, not_found, State#state{get_timing=GT1}}
end
end
end;
handle_call({head, Bucket, Key, Tag}, _From, State) ->
LedgerKey = leveled_codec:to_ledgerkey(Bucket, Key, Tag),
case fetch_head(LedgerKey,
State#state.penciller,
State#state.ledger_cache) of
not_present ->
{reply, not_found, State};
Head ->
case leveled_codec:striphead_to_details(Head) of
{_SeqN, tomb, _MH, _MD} ->
{reply, not_found, State};
{_SeqN, {active, TS}, _MH, MD} ->
case TS >= leveled_codec:integer_now() of
true ->
OMD =
leveled_codec:build_metadata_object(LedgerKey,
MD),
{reply, {ok, OMD}, State};
false ->
{reply, not_found, State}
end
end
end;
handle_call({snapshot, SnapType, Query, LongRunning}, _From, State) ->
% Snapshot the store, specifying if the snapshot should be long running
% (i.e. will the snapshot be queued or be required for an extended period
% e.g. many minutes)
Reply = snapshot_store(State, SnapType, Query, LongRunning),
{reply, Reply, State};
handle_call({return_runner, QueryType}, _From, State) ->
{reply, get_runner(State, QueryType), State};
handle_call({compact_journal, Timeout}, _From, State) ->
ok = leveled_inker:ink_compactjournal(State#state.inker,
self(),
Timeout),
{reply, ok, State};
handle_call(confirm_compact, _From, State) ->
{reply, leveled_inker:ink_compactionpending(State#state.inker), State};
handle_call(close, _From, State) ->
{stop, normal, ok, State};
handle_call(destroy, _From, State=#state{is_snapshot=Snp}) when Snp == false ->
{stop, destroy, ok, State}.
handle_cast(_Msg, State) ->
{noreply, State}.
handle_info(_Info, State) ->
{noreply, State}.
terminate(destroy, State) ->
leveled_log:log("B0011", []),
{ok, InkPathList} = leveled_inker:ink_doom(State#state.inker),
{ok, PCLPathList} = leveled_penciller:pcl_doom(State#state.penciller),
lists:foreach(fun(DirPath) -> delete_path(DirPath) end, InkPathList),
lists:foreach(fun(DirPath) -> delete_path(DirPath) end, PCLPathList),
ok;
terminate(Reason, State) ->
leveled_log:log("B0003", [Reason]),
ok = leveled_inker:ink_close(State#state.inker),
ok = leveled_penciller:pcl_close(State#state.penciller).
code_change(_OldVsn, State, _Extra) ->
{ok, State}.
%%%============================================================================
%%% External functions
%%%============================================================================
-spec empty_ledgercache() -> ledger_cache().
%% @doc
%% Empty the ledger cache table following a push
empty_ledgercache() ->
#ledger_cache{mem = ets:new(empty, [ordered_set])}.
-spec push_ledgercache(pid(), ledger_cache()) -> ok|returned.
%% @doc
%% Push the ledgercache to the Penciller - which should respond ok or
%% returned. If the response is ok the cache can be flushed, but if the
%% response is returned the cache should continue to build and it should try
%% to flush at a later date
push_ledgercache(Penciller, Cache) ->
CacheToLoad = {Cache#ledger_cache.loader,
Cache#ledger_cache.index,
Cache#ledger_cache.min_sqn,
Cache#ledger_cache.max_sqn},
leveled_penciller:pcl_pushmem(Penciller, CacheToLoad).
-spec loadqueue_ledgercache(ledger_cache()) -> ledger_cache().
%% @doc
%% The ledger cache can be built from a queue, for example when loading the
%% ledger from the head of the journal on startup
%%
%% The queue should be build using [NewKey|Acc] so that the most recent
%% key is kept in the sort
loadqueue_ledgercache(Cache) ->
SL = lists:ukeysort(1, Cache#ledger_cache.load_queue),
T = leveled_tree:from_orderedlist(SL, ?CACHE_TYPE),
Cache#ledger_cache{load_queue = [], loader = T}.
-spec snapshot_store(ledger_cache(),
pid(), null|pid(), store|ledger,
undefined|tuple(), undefined|boolean()) ->
{ok, pid(), pid()|null}.
%% @doc
%% Allow all a snapshot to be created from part of the store, preferably
%% passing in a query filter so that all of the LoopState does not need to
%% be copied from the real actor to the clone
%%
%% SnapType can be store (requires journal and ledger) or ledger (requires
%% ledger only)
%%
%% Query can be no_lookup, indicating the snapshot will be used for non-specific
%% range queries and not direct fetch requests. {StartKey, EndKey} if the the
%% snapshot is to be used for one specific query only (this is much quicker to
%% setup, assuming the range is a small subset of the overall key space).
snapshot_store(LedgerCache, Penciller, Inker, SnapType, Query, LongRunning) ->
LedgerCacheReady = readycache_forsnapshot(LedgerCache, Query),
BookiesMem = {LedgerCacheReady#ledger_cache.loader,
LedgerCacheReady#ledger_cache.index,
LedgerCacheReady#ledger_cache.min_sqn,
LedgerCacheReady#ledger_cache.max_sqn},
PCLopts = #penciller_options{start_snapshot = true,
source_penciller = Penciller,
snapshot_query = Query,
snapshot_longrunning = LongRunning,
bookies_mem = BookiesMem},
{ok, LedgerSnapshot} = leveled_penciller:pcl_start(PCLopts),
case SnapType of
store ->
InkerOpts = #inker_options{start_snapshot=true,
source_inker=Inker},
{ok, JournalSnapshot} = leveled_inker:ink_start(InkerOpts),
{ok, LedgerSnapshot, JournalSnapshot};
ledger ->
{ok, LedgerSnapshot, null}
end.
snapshot_store(State, SnapType, Query, LongRunning) ->
snapshot_store(State#state.ledger_cache,
State#state.penciller,
State#state.inker,
SnapType,
Query,
LongRunning).
-spec fetch_value(pid(), {any(), integer()}) -> not_present|any().
%% @doc
%% Fetch a value from the Journal
fetch_value(Inker, {Key, SQN}) ->
SW = os:timestamp(),
case leveled_inker:ink_fetch(Inker, Key, SQN) of
{ok, Value} ->
maybe_longrunning(SW, inker_fetch),
Value;
not_present ->
not_present
end.
%%%============================================================================
%%% Internal functions
%%%============================================================================
return_snapfun(State, SnapType, Query, LongRunning, SnapPreFold) ->
case SnapPreFold of
true ->
{ok, LS, JS} = snapshot_store(State, SnapType, Query, LongRunning),
fun() -> {ok, LS, JS} end;
false ->
Self = self(),
% Timeout will be ignored, as will Requestor
%
% This uses the external snapshot - as the snapshot will need
% to have consistent state between Bookie and Penciller when
% it is made.
fun() -> book_snapshot(Self, SnapType, Query, LongRunning) end
end.
snaptype_by_presence(true) ->
store;
snaptype_by_presence(false) ->
ledger.
-spec get_runner(book_state(), tuple()) -> {async, fun()}.
%% @doc
%% Getan {async, Runner} for a given fold type. Fold types have different
%% tuple inputs
get_runner(State, {index_query, Constraint, FoldAccT, Range, TermHandling}) ->
{IdxFld, StartT, EndT} = Range,
{Bucket, ObjKey0} =
case Constraint of
{B, SK} ->
{B, SK};
B ->
{B, null}
end,
StartKey =
leveled_codec:to_ledgerkey(Bucket, ObjKey0, ?IDX_TAG, IdxFld, StartT),
EndKey =
leveled_codec:to_ledgerkey(Bucket, null, ?IDX_TAG, IdxFld, EndT),
SnapFun = return_snapfun(State, ledger, {StartKey, EndKey}, false, false),
leveled_runner:index_query(SnapFun,
{StartKey, EndKey, TermHandling},
FoldAccT);
get_runner(State, {keylist, Tag, FoldAccT}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucketkey_query(SnapFun, Tag, null, FoldAccT);
get_runner(State, {keylist, Tag, Bucket, FoldAccT}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucketkey_query(SnapFun, Tag, Bucket, FoldAccT);
%% Set of runners for object or metadata folds
get_runner(State,
{foldheads_allkeys,
Tag, FoldFun,
JournalCheck, SnapPreFold, SegmentList}) ->
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, no_lookup, true, SnapPreFold),
leveled_runner:foldheads_allkeys(SnapFun,
Tag, FoldFun,
JournalCheck, SegmentList);
get_runner(State,
{foldobjects_allkeys, Tag, FoldFun, SnapPreFold}) ->
SnapFun = return_snapfun(State, store, no_lookup, true, SnapPreFold),
leveled_runner:foldobjects_allkeys(SnapFun, Tag, FoldFun);
get_runner(State,
{foldheads_bybucket,
Tag, Bucket, KeyRange,
FoldFun,
JournalCheck, SnapPreFold, SegmentList}) ->
{StartKey, EndKey, SnapQ} = return_ledger_keyrange(Tag, Bucket, KeyRange),
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, SnapQ, true, SnapPreFold),
leveled_runner:foldheads_bybucket(SnapFun,
{Tag, StartKey, EndKey},
FoldFun,
JournalCheck, SegmentList);
get_runner(State,
{foldobjects_bybucket,
Tag, Bucket, KeyRange,
FoldFun,
SnapPreFold}) ->
{StartKey, EndKey, SnapQ} = return_ledger_keyrange(Tag, Bucket, KeyRange),
SnapFun = return_snapfun(State, store, SnapQ, true, SnapPreFold),
leveled_runner:foldobjects_bybucket(SnapFun,
{Tag, StartKey, EndKey},
FoldFun);
get_runner(State,
{foldobjects_byindex,
Tag, Bucket, {Field, FromTerm, ToTerm},
FoldObjectsFun,
SnapPreFold}) ->
SnapFun = return_snapfun(State, store, no_lookup, true, SnapPreFold),
leveled_runner:foldobjects_byindex(SnapFun,
{Tag, Bucket, Field, FromTerm, ToTerm},
FoldObjectsFun);
%% Set of specific runners, primarily used as exmaples for tests
get_runner(State, DeprecatedQuery) ->
get_deprecatedrunner(State, DeprecatedQuery).
-spec get_deprecatedrunner(book_state(), tuple()) -> {async, fun()}.
%% @doc
%% Get an {async, Runner} for a given fold type. Fold types have different
%% tuple inputs. These folds are currentyl used in tests, but are deprecated.
%% Most of these folds should be achievable through other available folds.
get_deprecatedrunner(State, {bucket_stats, Bucket}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucket_sizestats(SnapFun, Bucket, ?STD_TAG);
get_deprecatedrunner(State, {riakbucket_stats, Bucket}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucket_sizestats(SnapFun, Bucket, ?RIAK_TAG);
get_deprecatedrunner(State, {binary_bucketlist, Tag, FoldAccT}) ->
{FoldKeysFun, Acc} = FoldAccT,
SnapFun = return_snapfun(State, ledger, no_lookup, false, false),
leveled_runner:binary_bucketlist(SnapFun, Tag, FoldKeysFun, Acc);
get_deprecatedrunner(State, {hashlist_query, Tag, JournalCheck}) ->
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, no_lookup, true, true),
leveled_runner:hashlist_query(SnapFun, Tag, JournalCheck);
get_deprecatedrunner(State,
{tictactree_obj,
{Tag, Bucket, StartK, EndK, JournalCheck},
TreeSize,
PartitionFilter}) ->
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, no_lookup, true, true),
leveled_runner:tictactree(SnapFun,
{Tag, Bucket, {StartK, EndK}},
JournalCheck,
TreeSize,
PartitionFilter);
get_deprecatedrunner(State,
{tictactree_idx,
{Bucket, IdxField, StartK, EndK},
TreeSize,
PartitionFilter}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:tictactree(SnapFun,
{?IDX_TAG, Bucket, {IdxField, StartK, EndK}},
false,
TreeSize,
PartitionFilter).
-spec return_ledger_keyrange(atom(), any(), tuple()) ->
{tuple(), tuple(), tuple()|no_lookup}.
%% @doc
%% Convert a range of binary keys into a ledger key range, returning
%% {StartLK, EndLK, Query} where Query is to indicate whether the query
%% range is worth using to minimise the cost of the snapshot
return_ledger_keyrange(Tag, Bucket, KeyRange) ->
{StartKey, EndKey, Snap} =
case KeyRange of
all ->
{leveled_codec:to_ledgerkey(Bucket, null, Tag),
leveled_codec:to_ledgerkey(Bucket, null, Tag),
false};
{StartTerm, <<"$all">>} ->
{leveled_codec:to_ledgerkey(Bucket, StartTerm, Tag),
leveled_codec:to_ledgerkey(Bucket, null, Tag),
false};
{StartTerm, EndTerm} ->
{leveled_codec:to_ledgerkey(Bucket, StartTerm, Tag),
leveled_codec:to_ledgerkey(Bucket, EndTerm, Tag),
true}
end,
SnapQuery =
case Snap of
true ->
{StartKey, EndKey};
false ->
no_lookup
end,
{StartKey, EndKey, SnapQuery}.
maybe_longrunning(SW, Aspect) ->
case timer:now_diff(os:timestamp(), SW) of
N when N > ?LONG_RUNNING ->
leveled_log:log("B0013", [N, Aspect]);
_ ->
ok
end.
readycache_forsnapshot(LedgerCache, {StartKey, EndKey}) ->
{KL, MinSQN, MaxSQN} = scan_table(LedgerCache#ledger_cache.mem,
StartKey,
EndKey),
case KL of
[] ->
#ledger_cache{loader=empty_cache,
index=empty_index,
min_sqn=MinSQN,
max_sqn=MaxSQN};
_ ->
#ledger_cache{loader=leveled_tree:from_orderedlist(KL,
?CACHE_TYPE),
index=empty_index,
min_sqn=MinSQN,
max_sqn=MaxSQN}
end;
readycache_forsnapshot(LedgerCache, Query) ->
% Need to convert the Ledger Cache away from using the ETS table
Tree = leveled_tree:from_orderedset(LedgerCache#ledger_cache.mem,
?CACHE_TYPE),
case leveled_tree:tsize(Tree) of
0 ->
#ledger_cache{loader=empty_cache,
index=empty_index,
min_sqn=LedgerCache#ledger_cache.min_sqn,
max_sqn=LedgerCache#ledger_cache.max_sqn};
_ ->
Idx =
case Query of
no_lookup ->
empty_index;
_ ->
LedgerCache#ledger_cache.index
end,
#ledger_cache{loader=Tree,
index=Idx,
min_sqn=LedgerCache#ledger_cache.min_sqn,
max_sqn=LedgerCache#ledger_cache.max_sqn}
end.
scan_table(Table, StartKey, EndKey) ->
scan_table(Table, StartKey, EndKey, [], infinity, 0).
scan_table(Table, StartKey, EndKey, Acc, MinSQN, MaxSQN) ->
case ets:next(Table, StartKey) of
'$end_of_table' ->
{lists:reverse(Acc), MinSQN, MaxSQN};
NextKey ->
case leveled_codec:endkey_passed(EndKey, NextKey) of
true ->
{lists:reverse(Acc), MinSQN, MaxSQN};
false ->
[{NextKey, NextVal}] = ets:lookup(Table, NextKey),
SQN = leveled_codec:strip_to_seqonly({NextKey, NextVal}),
scan_table(Table,
NextKey,
EndKey,
[{NextKey, NextVal}|Acc],
min(MinSQN, SQN),
max(MaxSQN, SQN))
end
end.
set_options(Opts) ->
MaxJournalSize0 = get_opt(max_journalsize, Opts, 10000000000),
JournalSizeJitter = MaxJournalSize0 div (100 div ?JOURNAL_SIZE_JITTER),
MaxJournalSize = MaxJournalSize0 -
erlang:phash2(self()) rem JournalSizeJitter,
SyncStrat = get_opt(sync_strategy, Opts, sync),
WRP = get_opt(waste_retention_period, Opts),
AltStrategy = get_opt(reload_strategy, Opts, []),
ReloadStrategy = leveled_codec:inker_reload_strategy(AltStrategy),
PCLL0CacheSize = get_opt(max_pencillercachesize, Opts),
RootPath = get_opt(root_path, Opts),
JournalFP = RootPath ++ "/" ++ ?JOURNAL_FP,
LedgerFP = RootPath ++ "/" ++ ?LEDGER_FP,
ok = filelib:ensure_dir(JournalFP),
ok = filelib:ensure_dir(LedgerFP),
CompressionMethod =
case get_opt(compression_method, Opts, ?COMPRESSION_METHOD) of
native ->
% Note native compression will have reduced performance
% https://github.com/martinsumner/leveled/issues/95
native;
lz4 ->
% Must include lz4 library in rebar.config
lz4
end,
CompressOnReceipt =
case get_opt(compression_point, Opts, ?COMPRESSION_POINT) of
on_receipt ->
% Note this will add measurable delay to PUT time
% https://github.com/martinsumner/leveled/issues/95
true;
on_compact ->
% If using lz4 this is not recommended
false
end,
{#inker_options{root_path = JournalFP,
reload_strategy = ReloadStrategy,
max_run_length = get_opt(max_run_length, Opts),
waste_retention_period = WRP,
compression_method = CompressionMethod,
compress_on_receipt = CompressOnReceipt,
cdb_options =
#cdb_options{max_size=MaxJournalSize,
binary_mode=true,
sync_strategy=SyncStrat}},
#penciller_options{root_path = LedgerFP,
max_inmemory_tablesize = PCLL0CacheSize,
levelzero_cointoss = true,
compression_method = CompressionMethod}}.
startup(InkerOpts, PencillerOpts, RecentAAE) ->
{ok, Inker} = leveled_inker:ink_start(InkerOpts),
{ok, Penciller} = leveled_penciller:pcl_start(PencillerOpts),
LedgerSQN = leveled_penciller:pcl_getstartupsequencenumber(Penciller),
leveled_log:log("B0005", [LedgerSQN]),
ok = leveled_inker:ink_loadpcl(Inker,
LedgerSQN + 1,
get_loadfun(RecentAAE),
Penciller),
{Inker, Penciller}.
fetch_head(Key, Penciller, LedgerCache) ->
SW = os:timestamp(),
CacheResult =
case LedgerCache#ledger_cache.mem of
undefined ->
[];
Tab ->
ets:lookup(Tab, Key)
end,
case CacheResult of
[{Key, Head}] ->
Head;
[] ->
Hash = leveled_codec:segment_hash(Key),
case leveled_penciller:pcl_fetch(Penciller, Key, Hash) of
{Key, Head} ->
maybe_longrunning(SW, pcl_head),
Head;
not_present ->
maybe_longrunning(SW, pcl_head),
not_present
end
end.
preparefor_ledgercache(?INKT_KEYD,
LedgerKey, SQN, _Obj, _Size, {IdxSpecs, TTL},
_AAE) ->
{Bucket, Key} = leveled_codec:from_ledgerkey(LedgerKey),
KeyChanges =
leveled_codec:idx_indexspecs(IdxSpecs, Bucket, Key, SQN, TTL),
{no_lookup, SQN, KeyChanges};
preparefor_ledgercache(_InkTag,
LedgerKey, SQN, Obj, Size, {IdxSpecs, TTL},
AAE) ->
{Bucket, Key, MetaValue, {KeyH, ObjH}, LastMods} =
leveled_codec:generate_ledgerkv(LedgerKey, SQN, Obj, Size, TTL),
KeyChanges =
[{LedgerKey, MetaValue}] ++
leveled_codec:idx_indexspecs(IdxSpecs, Bucket, Key, SQN, TTL) ++
leveled_codec:aae_indexspecs(AAE, Bucket, Key, SQN, ObjH, LastMods),
{KeyH, SQN, KeyChanges}.
addto_ledgercache({H, SQN, KeyChanges}, Cache) ->
ets:insert(Cache#ledger_cache.mem, KeyChanges),
UpdIndex = leveled_pmem:prepare_for_index(Cache#ledger_cache.index, H),
Cache#ledger_cache{index = UpdIndex,
min_sqn=min(SQN, Cache#ledger_cache.min_sqn),
max_sqn=max(SQN, Cache#ledger_cache.max_sqn)}.
addto_ledgercache({H, SQN, KeyChanges}, Cache, loader) ->
UpdQ = KeyChanges ++ Cache#ledger_cache.load_queue,
UpdIndex = leveled_pmem:prepare_for_index(Cache#ledger_cache.index, H),
Cache#ledger_cache{index = UpdIndex,
load_queue = UpdQ,
min_sqn=min(SQN, Cache#ledger_cache.min_sqn),
max_sqn=max(SQN, Cache#ledger_cache.max_sqn)}.
maybepush_ledgercache(MaxCacheSize, Cache, Penciller) ->
Tab = Cache#ledger_cache.mem,
CacheSize = ets:info(Tab, size),
TimeToPush = maybe_withjitter(CacheSize, MaxCacheSize),
if
TimeToPush ->
CacheToLoad = {Tab,
Cache#ledger_cache.index,
Cache#ledger_cache.min_sqn,
Cache#ledger_cache.max_sqn},
case leveled_penciller:pcl_pushmem(Penciller, CacheToLoad) of
ok ->
Cache0 = #ledger_cache{},
true = ets:delete(Tab),
NewTab = ets:new(mem, [ordered_set]),
{ok, Cache0#ledger_cache{mem=NewTab}};
returned ->
{returned, Cache}
end;
true ->
{ok, Cache}
end.
maybe_withjitter(CacheSize, MaxCacheSize) ->
if
CacheSize > MaxCacheSize ->
R = leveled_rand:uniform(7 * MaxCacheSize),
if
(CacheSize - MaxCacheSize) > R ->
true;
true ->
false
end;
true ->
false
end.
get_loadfun(RecentAAE) ->
PrepareFun =
fun(Tag, PK, SQN, Obj, VS, IdxSpecs) ->
preparefor_ledgercache(Tag, PK, SQN, Obj, VS, IdxSpecs, RecentAAE)
end,
LoadFun =
fun(KeyInJournal, ValueInJournal, _Pos, Acc0, ExtractFun) ->
{MinSQN, MaxSQN, OutputTree} = Acc0,
{SQN, InkTag, PK} = KeyInJournal,
% VBin may already be a term
{VBin, VSize} = ExtractFun(ValueInJournal),
{Obj, IdxSpecs} = leveled_codec:split_inkvalue(VBin),
case SQN of
SQN when SQN < MinSQN ->
{loop, Acc0};
SQN when SQN < MaxSQN ->
Chngs = PrepareFun(InkTag, PK, SQN, Obj, VSize, IdxSpecs),
{loop,
{MinSQN,
MaxSQN,
addto_ledgercache(Chngs, OutputTree, loader)}};
MaxSQN ->
leveled_log:log("B0006", [SQN]),
Chngs = PrepareFun(InkTag, PK, SQN, Obj, VSize, IdxSpecs),
{stop,
{MinSQN,
MaxSQN,
addto_ledgercache(Chngs, OutputTree, loader)}};
SQN when SQN > MaxSQN ->
leveled_log:log("B0007", [MaxSQN, SQN]),
{stop, Acc0}
end
end,
LoadFun.
get_opt(Key, Opts) ->
get_opt(Key, Opts, undefined).
get_opt(Key, Opts, Default) ->
case proplists:get_value(Key, Opts) of
undefined ->
Default;
Value ->
Value
end.
delete_path(DirPath) ->
ok = filelib:ensure_dir(DirPath),
{ok, Files} = file:list_dir(DirPath),
[file:delete(filename:join([DirPath, File])) || File <- Files],
file:del_dir(DirPath).
%%%============================================================================
%%% Test
%%%============================================================================
-ifdef(TEST).
reset_filestructure() ->
RootPath = "../test",
leveled_inker:clean_testdir(RootPath ++ "/" ++ ?JOURNAL_FP),
leveled_penciller:clean_testdir(RootPath ++ "/" ++ ?LEDGER_FP),
RootPath.
generate_multiple_objects(Count, KeyNumber) ->
generate_multiple_objects(Count, KeyNumber, []).
generate_multiple_objects(0, _KeyNumber, ObjL) ->
ObjL;
generate_multiple_objects(Count, KeyNumber, ObjL) ->
Key = "Key" ++ integer_to_list(KeyNumber),
Value = leveled_rand:rand_bytes(256),
IndexSpec = [{add, "idx1_bin", "f" ++ integer_to_list(KeyNumber rem 10)}],
generate_multiple_objects(Count - 1,
KeyNumber + 1,
ObjL ++ [{Key, Value, IndexSpec}]).
ttl_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath}]),
ObjL1 = generate_multiple_objects(100, 1),
% Put in all the objects with a TTL in the future
Future = leveled_codec:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
lists:foreach(fun({K, V, _S}) ->
{ok, V} = book_get(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL1),
lists:foreach(fun({K, _V, _S}) ->
{ok, _} = book_head(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL1),
ObjL2 = generate_multiple_objects(100, 101),
Past = leveled_codec:integer_now() - 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Past) end,
ObjL2),
lists:foreach(fun({K, _V, _S}) ->
not_found = book_get(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL2),
lists:foreach(fun({K, _V, _S}) ->
not_found = book_head(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL2),
{async, BucketFolder} = book_returnfolder(Bookie1,
{bucket_stats, "Bucket"}),
{_Size, Count} = BucketFolder(),
?assertMatch(100, Count),
FoldKeysFun = fun(_B, Item, FKFAcc) -> FKFAcc ++ [Item] end,
{async,
IndexFolder} = book_returnfolder(Bookie1,
{index_query,
"Bucket",
{FoldKeysFun, []},
{"idx1_bin", "f8", "f9"},
{false, undefined}}),
KeyList = IndexFolder(),
?assertMatch(20, length(KeyList)),
{ok, Regex} = re:compile("f8"),
{async,
IndexFolderTR} = book_returnfolder(Bookie1,
{index_query,
"Bucket",
{FoldKeysFun, []},
{"idx1_bin", "f8", "f9"},
{true, Regex}}),
TermKeyList = IndexFolderTR(),
?assertMatch(10, length(TermKeyList)),
ok = book_close(Bookie1),
{ok, Bookie2} = book_start([{root_path, RootPath}]),
{async,
IndexFolderTR2} = book_returnfolder(Bookie2,
{index_query,
"Bucket",
{FoldKeysFun, []},
{"idx1_bin", "f7", "f9"},
{false, Regex}}),
KeyList2 = IndexFolderTR2(),
?assertMatch(10, length(KeyList2)),
lists:foreach(fun({K, _V, _S}) ->
not_found = book_get(Bookie2, "Bucket", K, ?STD_TAG)
end,
ObjL2),
lists:foreach(fun({K, _V, _S}) ->
not_found = book_head(Bookie2, "Bucket", K, ?STD_TAG)
end,
ObjL2),
ok = book_close(Bookie2),
reset_filestructure().
hashlist_query_test_() ->
{timeout, 60, fun hashlist_query_testto/0}.
hashlist_query_testto() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ObjL1 = generate_multiple_objects(1200, 1),
% Put in all the objects with a TTL in the future
Future = leveled_codec:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
ObjL2 = generate_multiple_objects(20, 1201),
% Put in a few objects with a TTL in the past
Past = leveled_codec:integer_now() - 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Past) end,
ObjL2),
% Scan the store for the Bucket, Keys and Hashes
{async, HTFolder} = book_returnfolder(Bookie1,
{hashlist_query,
?STD_TAG,
false}),
KeyHashList = HTFolder(),
lists:foreach(fun({B, _K, H}) ->
?assertMatch("Bucket", B),
?assertMatch(true, is_integer(H))
end,
KeyHashList),
?assertMatch(1200, length(KeyHashList)),
ok = book_close(Bookie1),
{ok, Bookie2} = book_start([{root_path, RootPath},
{max_journalsize, 200000},
{cache_size, 500}]),
{async, HTFolder2} = book_returnfolder(Bookie2,
{hashlist_query,
?STD_TAG,
false}),
L0 = length(KeyHashList),
HTR2 = HTFolder2(),
?assertMatch(L0, length(HTR2)),
?assertMatch(KeyHashList, HTR2),
ok = book_close(Bookie2),
reset_filestructure().
hashlist_query_withjournalcheck_test_() ->
{timeout, 60, fun hashlist_query_withjournalcheck_testto/0}.
hashlist_query_withjournalcheck_testto() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ObjL1 = generate_multiple_objects(800, 1),
% Put in all the objects with a TTL in the future
Future = leveled_codec:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
{async, HTFolder1} = book_returnfolder(Bookie1,
{hashlist_query,
?STD_TAG,
false}),
KeyHashList = HTFolder1(),
{async, HTFolder2} = book_returnfolder(Bookie1,
{hashlist_query,
?STD_TAG,
true}),
?assertMatch(KeyHashList, HTFolder2()),
ok = book_close(Bookie1),
reset_filestructure().
foldobjects_vs_hashtree_test_() ->
{timeout, 60, fun foldobjects_vs_hashtree_testto/0}.
foldobjects_vs_hashtree_testto() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ObjL1 = generate_multiple_objects(800, 1),
% Put in all the objects with a TTL in the future
Future = leveled_codec:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
{async, HTFolder1} = book_returnfolder(Bookie1,
{hashlist_query,
?STD_TAG,
false}),
KeyHashList1 = lists:usort(HTFolder1()),
FoldObjectsFun = fun(B, K, V, Acc) ->
[{B, K, erlang:phash2(term_to_binary(V))}|Acc] end,
{async, HTFolder2} = book_returnfolder(Bookie1,
{foldobjects_allkeys,
?STD_TAG,
FoldObjectsFun,
true}),
KeyHashList2 = HTFolder2(),
?assertMatch(KeyHashList1, lists:usort(KeyHashList2)),
FoldHeadsFun =
fun(B, K, ProxyV, Acc) ->
{proxy_object,
_MDBin,
_Size,
{FetchFun, Clone, JK}} = binary_to_term(ProxyV),
V = FetchFun(Clone, JK),
[{B, K, erlang:phash2(term_to_binary(V))}|Acc]
end,
{async, HTFolder3} =
book_returnfolder(Bookie1,
{foldheads_allkeys,
?STD_TAG,
FoldHeadsFun,
true, true, false}),
KeyHashList3 = HTFolder3(),
?assertMatch(KeyHashList1, lists:usort(KeyHashList3)),
FoldHeadsFun2 =
fun(B, K, ProxyV, Acc) ->
{proxy_object,
MD,
_Size,
_Fetcher} = binary_to_term(ProxyV),
{Hash, _Size} = MD,
[{B, K, Hash}|Acc]
end,
{async, HTFolder4} =
book_returnfolder(Bookie1,
{foldheads_allkeys,
?STD_TAG,
FoldHeadsFun2,
false, false, false}),
KeyHashList4 = HTFolder4(),
?assertMatch(KeyHashList1, lists:usort(KeyHashList4)),
ok = book_close(Bookie1),
reset_filestructure().
foldobjects_vs_foldheads_bybucket_test_() ->
{timeout, 60, fun foldobjects_vs_foldheads_bybucket_testto/0}.
foldobjects_vs_foldheads_bybucket_testto() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ObjL1 = generate_multiple_objects(400, 1),
ObjL2 = generate_multiple_objects(400, 1),
% Put in all the objects with a TTL in the future
Future = leveled_codec:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"BucketA", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"BucketB", K, V, S,
?STD_TAG,
Future) end,
ObjL2),
FoldObjectsFun = fun(B, K, V, Acc) ->
[{B, K, erlang:phash2(term_to_binary(V))}|Acc] end,
{async, HTFolder1A} =
book_returnfolder(Bookie1,
{foldobjects_bybucket,
?STD_TAG,
"BucketA",
all,
FoldObjectsFun,
false}),
KeyHashList1A = HTFolder1A(),
{async, HTFolder1B} =
book_returnfolder(Bookie1,
{foldobjects_bybucket,
?STD_TAG,
"BucketB",
all,
FoldObjectsFun,
true}),
KeyHashList1B = HTFolder1B(),
?assertMatch(false,
lists:usort(KeyHashList1A) == lists:usort(KeyHashList1B)),
FoldHeadsFun =
fun(B, K, ProxyV, Acc) ->
{proxy_object,
_MDBin,
_Size,
{FetchFun, Clone, JK}} = binary_to_term(ProxyV),
V = FetchFun(Clone, JK),
[{B, K, erlang:phash2(term_to_binary(V))}|Acc]
end,
{async, HTFolder2A} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketA",
all,
FoldHeadsFun,
true, true, false}),
KeyHashList2A = HTFolder2A(),
{async, HTFolder2B} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
all,
FoldHeadsFun,
true, false, false}),
KeyHashList2B = HTFolder2B(),
?assertMatch(true,
lists:usort(KeyHashList1A) == lists:usort(KeyHashList2A)),
?assertMatch(true,
lists:usort(KeyHashList1B) == lists:usort(KeyHashList2B)),
{async, HTFolder2C} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
{"Key", <<"$all">>},
FoldHeadsFun,
true, false, false}),
KeyHashList2C = HTFolder2C(),
{async, HTFolder2D} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
{"Key", "Keyzzzzz"},
FoldHeadsFun,
true, true, false}),
KeyHashList2D = HTFolder2D(),
?assertMatch(true,
lists:usort(KeyHashList2B) == lists:usort(KeyHashList2C)),
?assertMatch(true,
lists:usort(KeyHashList2B) == lists:usort(KeyHashList2D)),
{async, HTFolder2E} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
{"Key", "Key4zzzz"},
FoldHeadsFun,
true, false, false}),
KeyHashList2E = HTFolder2E(),
{async, HTFolder2F} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
{"Key5", <<"all">>},
FoldHeadsFun,
true, false, false}),
KeyHashList2F = HTFolder2F(),
?assertMatch(true, length(KeyHashList2E) > 0),
?assertMatch(true, length(KeyHashList2F) > 0),
?assertMatch(true,
lists:usort(KeyHashList2B) ==
lists:usort(KeyHashList2E ++ KeyHashList2F)),
ok = book_close(Bookie1),
reset_filestructure().
scan_table_test() ->
K1 = leveled_codec:to_ledgerkey(<<"B1">>,
<<"K1">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AA1">>),
K2 = leveled_codec:to_ledgerkey(<<"B1">>,
<<"K2">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AA1">>),
K3 = leveled_codec:to_ledgerkey(<<"B1">>,
<<"K3">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AB1">>),
K4 = leveled_codec:to_ledgerkey(<<"B1">>,
<<"K4">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AA2">>),
K5 = leveled_codec:to_ledgerkey(<<"B2">>,
<<"K5">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AA2">>),
Tab0 = ets:new(mem, [ordered_set]),
SK_A0 = leveled_codec:to_ledgerkey(<<"B1">>,
null,
?IDX_TAG,
<<"F1-bin">>,
<<"AA0">>),
EK_A9 = leveled_codec:to_ledgerkey(<<"B1">>,
null,
?IDX_TAG,
<<"F1-bin">>,
<<"AA9">>),
Empty = {[], infinity, 0},
?assertMatch(Empty,
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K1, {1, active, no_lookup, null}}]),
?assertMatch({[{K1, _}], 1, 1},
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K2, {2, active, no_lookup, null}}]),
?assertMatch({[{K1, _}, {K2, _}], 1, 2},
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K3, {3, active, no_lookup, null}}]),
?assertMatch({[{K1, _}, {K2, _}], 1, 2},
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K4, {4, active, no_lookup, null}}]),
?assertMatch({[{K1, _}, {K2, _}, {K4, _}], 1, 4},
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K5, {5, active, no_lookup, null}}]),
?assertMatch({[{K1, _}, {K2, _}, {K4, _}], 1, 4},
scan_table(Tab0, SK_A0, EK_A9)).
longrunning_test() ->
SW = os:timestamp(),
timer:sleep(100),
ok = maybe_longrunning(SW, put).
coverage_cheat_test() ->
{noreply, _State0} = handle_info(timeout, #state{}),
{ok, _State1} = code_change(null, #state{}, null),
{noreply, _State2} = handle_cast(null, #state{}).
-endif.