leveled/src/leveled_penciller.erl
martinsumner ed96d0ca7a Change so that type of cache is parameterised
The Tree doesn't seem to be better than the skiplist.  Get ready to make
this switchable
2017-01-21 11:38:26 +00:00

1415 lines
62 KiB
Erlang

%% -------- PENCILLER ---------
%%
%% The penciller is responsible for writing and re-writing the ledger - a
%% persisted, ordered view of non-recent Keys and Metadata which have been
%% added to the store.
%% - The penciller maintains a manifest of all the files within the current
%% Ledger.
%% - The Penciller provides re-write (compaction) work up to be managed by
%% the Penciller's Clerk
%% - The Penciller can be cloned and maintains a register of clones who have
%% requested snapshots of the Ledger
%% - The accepts new dumps (in the form of a leveled_tree accomponied by
%% an array of hash-listing binaries) from the Bookie, and responds either 'ok'
%% to the bookie if the information is accepted nad the Bookie can refresh its
%% memory, or 'returned' if the bookie must continue without refreshing as the
%% Penciller is not currently able to accept the update (potentially due to a
%% backlog of compaction work)
%% - The Penciller's persistence of the ledger may not be reliable, in that it
%% may lose data but only in sequence from a particular sequence number. On
%% startup the Penciller will inform the Bookie of the highest sequence number
%% it has, and the Bookie should load any missing data from that point out of
%% the journal.
%%
%% -------- LEDGER ---------
%%
%% The Ledger is divided into many levels
%% - L0: New keys are received from the Bookie and and kept in the levelzero
%% cache, until that cache is the size of a SST file, and it is then persisted
%% as a SST file at this level. L0 SST files can be larger than the normal
%% maximum size - so we don't have to consider problems of either having more
%% than one L0 file (and handling what happens on a crash between writing the
%% files when the second may have overlapping sequence numbers), or having a
%% remainder with overlapping in sequence numbers in memory after the file is
%% written. Once the persistence is completed, the L0 cache can be erased.
%% There can be only one SST file at Level 0, so the work to merge that file
%% to the lower level must be the highest priority, as otherwise writes to the
%% ledger will stall, when there is next a need to persist.
%% - L1 TO L7: May contain multiple processes managing non-overlapping SST
%% files. Compaction work should be sheduled if the number of files exceeds
%% the target size of the level, where the target size is 8 ^ n.
%%
%% The most recent revision of a Key can be found by checking each level until
%% the key is found. To check a level the correct file must be sought from the
%% manifest for that level, and then a call is made to that file. If the Key
%% is not present then every level should be checked.
%%
%% If a compaction change takes the size of a level beyond the target size,
%% then compaction work for that level + 1 should be added to the compaction
%% work queue.
%% Compaction work is fetched by the Penciller's Clerk because:
%% - it has timed out due to a period of inactivity
%% - it has been triggered by the a cast to indicate the arrival of high
%% priority compaction work
%% The Penciller's Clerk (which performs compaction worker) will always call
%% the Penciller to find out the highest priority work currently required
%% whenever it has either completed work, or a timeout has occurred since it
%% was informed there was no work to do.
%%
%% When the clerk picks work it will take the current manifest, and the
%% Penciller assumes the manifest sequence number is to be incremented.
%% When the clerk has completed the work it can request that the manifest
%% change be committed by the Penciller. The commit is made through changing
%% the filename of the new manifest - so the Penciller is not held up by the
%% process of wiritng a file, just altering file system metadata.
%%
%% ---------- PUSH ----------
%%
%% The Penciller must support the PUSH of a dump of keys from the Bookie. The
%% call to PUSH should be immediately acknowledged, and then work should be
%% completed to merge the cache update into the L0 cache.
%%
%% The Penciller MUST NOT accept a new PUSH if the Clerk has commenced the
%% conversion of the current L0 cache into a SST file, but not completed this
%% change. The Penciller in this case returns the push, and the Bookie should
%% continue to grow the cache before trying again.
%%
%% ---------- FETCH ----------
%%
%% On request to fetch a key the Penciller should look first in the in-memory
%% L0 tree, then look in the SST files Level by Level (including level 0),
%% consulting the Manifest to determine which file should be checked at each
%% level.
%%
%% ---------- SNAPSHOT ----------
%%
%% Iterators may request a snapshot of the database. A snapshot is a cloned
%% Penciller seeded not from disk, but by the in-memory L0 gb_tree and the
%% in-memory manifest, allowing for direct reference for the SST file processes.
%%
%% Clones formed to support snapshots are registered by the Penciller, so that
%% SST files valid at the point of the snapshot until either the iterator is
%% completed or has timed out.
%%
%% ---------- ON STARTUP ----------
%%
%% On Startup the Bookie with ask the Penciller to initiate the Ledger first.
%% To initiate the Ledger the must consult the manifest, and then start a SST
%% management process for each file in the manifest.
%%
%% The penciller should then try and read any Level 0 file which has the
%% manifest sequence number one higher than the last store in the manifest.
%%
%% The Bookie will ask the Inker for any Keys seen beyond that sequence number
%% before the startup of the overall store can be completed.
%%
%% ---------- ON SHUTDOWN ----------
%%
%% On a controlled shutdown the Penciller should attempt to write any in-memory
%% ETS table to a L0 SST file, assuming one is nto already pending. If one is
%% already pending then the Penciller will not persist this part of the Ledger.
%%
%% ---------- FOLDER STRUCTURE ----------
%%
%% The following folders are used by the Penciller
%% $ROOT/ledger/ledger_manifest/ - used for keeping manifest files
%% $ROOT/ledger/ledger_files/ - containing individual SST files
%%
%% In larger stores there could be a large number of files in the ledger_file
%% folder - perhaps o(1000). It is assumed that modern file systems should
%% handle this efficiently.
%%
%% ---------- COMPACTION & MANIFEST UPDATES ----------
%%
%% The Penciller can have one and only one Clerk for performing compaction
%% work. When the Clerk has requested and taken work, it should perform the
%5 compaction work starting the new SST process to manage the new Ledger state
%% and then write a new manifest file that represents that state with using
%% the next Manifest sequence number as the filename:
%% - nonzero_<ManifestSQN#>.pnd
%%
%% The Penciller on accepting the change should rename the manifest file to -
%% - nonzero_<ManifestSQN#>.crr
%%
%% On startup, the Penciller should look for the nonzero_*.crr file with the
%% highest such manifest sequence number. This will be started as the
%% manifest, together with any _0_0.sst file found at that Manifest SQN.
%% Level zero files are not kept in the persisted manifest, and adding a L0
%% file does not advanced the Manifest SQN.
%%
%% The pace at which the store can accept updates will be dependent on the
%% speed at which the Penciller's Clerk can merge files at lower levels plus
%% the time it takes to merge from Level 0. As if a clerk has commenced
%% compaction work at a lower level and then immediately a L0 SST file is
%% written the Penciller will need to wait for this compaction work to
%% complete and the L0 file to be compacted before the ETS table can be
%% allowed to again reach capacity
%%
%% The writing of L0 files do not require the involvement of the clerk.
%% The L0 files are prompted directly by the penciller when the in-memory tree
%% has reached capacity. This places the penciller in a levelzero_pending
%% state, and in this state it must return new pushes. Once the SST file has
%% been completed it will confirm completion to the penciller which can then
%% revert the levelzero_pending state, add the file to the manifest and clear
%% the current level zero in-memory view.
%%
-module(leveled_penciller).
-behaviour(gen_server).
-include("include/leveled.hrl").
-export([
init/1,
handle_call/3,
handle_cast/2,
handle_info/2,
terminate/2,
code_change/3]).
-export([
pcl_start/1,
pcl_pushmem/2,
pcl_fetchlevelzero/2,
pcl_fetch/2,
pcl_fetch/3,
pcl_fetchkeys/5,
pcl_fetchnextkey/5,
pcl_checksequencenumber/3,
pcl_workforclerk/1,
pcl_manifestchange/2,
pcl_confirml0complete/4,
pcl_confirmdelete/3,
pcl_close/1,
pcl_doom/1,
pcl_registersnapshot/2,
pcl_releasesnapshot/2,
pcl_loadsnapshot/2,
pcl_getstartupsequencenumber/1]).
-export([
filepath/3,
clean_testdir/1]).
-include_lib("eunit/include/eunit.hrl").
-define(LEVEL_SCALEFACTOR, [{0, 0}, {1, 8}, {2, 64}, {3, 512},
{4, 4096}, {5, 32768}, {6, 262144},
{7, infinity}]).
-define(MAX_LEVELS, 8).
-define(MAX_WORK_WAIT, 300).
-define(MANIFEST_FP, "ledger_manifest").
-define(FILES_FP, "ledger_files").
-define(CURRENT_FILEX, "crr").
-define(PENDING_FILEX, "pnd").
-define(MEMTABLE, mem).
-define(MAX_TABLESIZE, 28000). % This is less than max - but COIN_SIDECOUNT
-define(SUPER_MAX_TABLE_SIZE, 40000).
-define(PROMPT_WAIT_ONL0, 5).
-define(WORKQUEUE_BACKLOG_TOLERANCE, 4).
-define(COIN_SIDECOUNT, 5).
-define(SLOW_FETCH, 20000).
-define(ITERATOR_SCANWIDTH, 4).
-define(SNAPSHOT_TIMEOUT, 3600).
-record(state, {manifest, % a manifest record from the leveled_manifest module
persisted_sqn = 0 :: integer(), % The highest SQN persisted
ledger_sqn = 0 :: integer(), % The highest SQN added to L0
root_path = "../test" :: string(),
clerk :: pid(),
levelzero_pending = false :: boolean(),
levelzero_constructor :: pid(),
levelzero_cache = [] :: list(), % a list of trees
levelzero_size = 0 :: integer(),
levelzero_maxcachesize :: integer(),
levelzero_cointoss = false :: boolean(),
levelzero_index, % An array
is_snapshot = false :: boolean(),
snapshot_fully_loaded = false :: boolean(),
source_penciller :: pid(),
levelzero_astree :: list(),
work_ongoing = false :: boolean(), % i.e. compaction work
work_backlog = false :: boolean(), % i.e. compaction work
head_timing :: tuple()}).
%%%============================================================================
%%% API
%%%============================================================================
pcl_start(PCLopts) ->
gen_server:start(?MODULE, [PCLopts], []).
pcl_pushmem(Pid, LedgerCache) ->
%% Bookie to dump memory onto penciller
gen_server:call(Pid, {push_mem, LedgerCache}, infinity).
pcl_fetchlevelzero(Pid, Slot) ->
%% Timeout to cause crash of L0 file when it can't get the close signal
%% as it is deadlocked making this call.
%%
%% If the timeout gets hit outside of close scenario the Penciller will
%% be stuck in L0 pending
gen_server:call(Pid, {fetch_levelzero, Slot}, 60000).
pcl_fetch(Pid, Key) ->
Hash = leveled_codec:magic_hash(Key),
if
Hash /= no_lookup ->
gen_server:call(Pid, {fetch, Key, Hash}, infinity)
end.
pcl_fetch(Pid, Key, Hash) ->
gen_server:call(Pid, {fetch, Key, Hash}, infinity).
pcl_fetchkeys(Pid, StartKey, EndKey, AccFun, InitAcc) ->
gen_server:call(Pid,
{fetch_keys, StartKey, EndKey, AccFun, InitAcc, -1},
infinity).
pcl_fetchnextkey(Pid, StartKey, EndKey, AccFun, InitAcc) ->
gen_server:call(Pid,
{fetch_keys, StartKey, EndKey, AccFun, InitAcc, 1},
infinity).
pcl_checksequencenumber(Pid, Key, SQN) ->
Hash = leveled_codec:magic_hash(Key),
if
Hash /= no_lookup ->
gen_server:call(Pid, {check_sqn, Key, Hash, SQN}, infinity)
end.
pcl_workforclerk(Pid) ->
gen_server:cast(Pid, work_for_clerk).
pcl_manifestchange(Pid, Manifest) ->
gen_server:cast(Pid, {manifest_change, Manifest}).
pcl_confirml0complete(Pid, FN, StartKey, EndKey) ->
gen_server:cast(Pid, {levelzero_complete, FN, StartKey, EndKey}).
pcl_confirmdelete(Pid, FileName, FilePid) ->
gen_server:cast(Pid, {confirm_delete, FileName, FilePid}).
pcl_getstartupsequencenumber(Pid) ->
gen_server:call(Pid, get_startup_sqn, infinity).
pcl_registersnapshot(Pid, Snapshot) ->
gen_server:call(Pid, {register_snapshot, Snapshot}, infinity).
pcl_releasesnapshot(Pid, Snapshot) ->
gen_server:cast(Pid, {release_snapshot, Snapshot}).
pcl_loadsnapshot(Pid, Increment) ->
gen_server:call(Pid, {load_snapshot, Increment}, infinity).
pcl_close(Pid) ->
gen_server:call(Pid, close, 60000).
pcl_doom(Pid) ->
gen_server:call(Pid, doom, 60000).
%%%============================================================================
%%% gen_server callbacks
%%%============================================================================
init([PCLopts]) ->
case {PCLopts#penciller_options.root_path,
PCLopts#penciller_options.start_snapshot} of
{undefined, true} ->
SrcPenciller = PCLopts#penciller_options.source_penciller,
{ok, State} = pcl_registersnapshot(SrcPenciller, self()),
ManifestClone = leveled_pmanifest:copy_manifest(State#state.manifest),
leveled_log:log("P0001", [self()]),
{ok, State#state{is_snapshot=true,
source_penciller=SrcPenciller,
manifest=ManifestClone}};
%% Need to do something about timeout
{_RootPath, false} ->
start_from_file(PCLopts)
end.
handle_call({push_mem, {PushedTree, PushedIdx, MinSQN, MaxSQN}},
From,
State=#state{is_snapshot=Snap}) when Snap == false ->
% The push_mem process is as follows:
%
% 1 - Receive a cache. The cache has four parts: a tree of keys and
% values, an array of 256 binaries listing the hashes present in the
% tree, a min SQN and a max SQN
%
% 2 - Check to see if there is a levelzero file pending. If so, the
% update must be returned. If not the update can be accepted
%
% 3 - The Penciller can now reply to the Bookie to show if the push has
% been accepted
%
% 4 - Update the cache:
% a) Append the cache to the list
% b) Add each of the 256 hash-listing binaries to the master L0 index array
%
% Check the approximate size of the cache. If it is over the maximum size,
% trigger a background L0 file write and update state of levelzero_pending.
case State#state.levelzero_pending or State#state.work_backlog of
true ->
leveled_log:log("P0018", [returned,
State#state.levelzero_pending,
State#state.work_backlog]),
{reply, returned, State};
false ->
leveled_log:log("P0018", [ok, false, false]),
gen_server:reply(From, ok),
{noreply,
update_levelzero(State#state.levelzero_size,
{PushedTree, PushedIdx, MinSQN, MaxSQN},
State#state.ledger_sqn,
State#state.levelzero_cache,
State)}
end;
handle_call({fetch, Key, Hash}, _From, State) ->
{R, HeadTimer} = timed_fetch_mem(Key,
Hash,
State#state.manifest,
State#state.levelzero_cache,
State#state.levelzero_index,
State#state.head_timing),
{reply, R, State#state{head_timing=HeadTimer}};
handle_call({check_sqn, Key, Hash, SQN}, _From, State) ->
{reply,
compare_to_sqn(plain_fetch_mem(Key,
Hash,
State#state.manifest,
State#state.levelzero_cache,
State#state.levelzero_index),
SQN),
State};
handle_call({fetch_keys, StartKey, EndKey, AccFun, InitAcc, MaxKeys},
_From,
State=#state{snapshot_fully_loaded=Ready})
when Ready == true ->
L0AsList =
case State#state.levelzero_astree of
undefined ->
leveled_pmem:merge_trees(StartKey,
EndKey,
State#state.levelzero_cache,
leveled_tree:empty(?CACHE_TYPE));
List ->
List
end,
SetupFoldFun =
fun(Level, Acc) ->
Pointers = leveled_pmanifest:range_lookup(State#state.manifest,
Level,
StartKey,
EndKey),
case Pointers of
[] -> Acc;
PL -> Acc ++ [{Level, PL}]
end
end,
SSTiter = lists:foldl(SetupFoldFun, [], lists:seq(0, ?MAX_LEVELS - 1)),
Acc = keyfolder({L0AsList, SSTiter},
{StartKey, EndKey},
{AccFun, InitAcc},
MaxKeys),
{reply, Acc, State#state{levelzero_astree = L0AsList}};
handle_call(get_startup_sqn, _From, State) ->
{reply, State#state.persisted_sqn, State};
handle_call({register_snapshot, Snapshot}, _From, State) ->
Manifest0 = leveled_pmanifest:add_snapshot(State#state.manifest,
Snapshot,
?SNAPSHOT_TIMEOUT),
{reply, {ok, State}, State#state{manifest = Manifest0}};
handle_call({load_snapshot, {BookieIncrTree, BookieIdx, MinSQN, MaxSQN}},
_From, State) ->
L0D = leveled_pmem:add_to_cache(State#state.levelzero_size,
{BookieIncrTree, MinSQN, MaxSQN},
State#state.ledger_sqn,
State#state.levelzero_cache),
{LedgerSQN, L0Size, L0Cache} = L0D,
L0Index = leveled_pmem:add_to_index(BookieIdx,
State#state.levelzero_index,
length(L0Cache)),
{reply, ok, State#state{levelzero_cache=L0Cache,
levelzero_size=L0Size,
levelzero_index=L0Index,
ledger_sqn=LedgerSQN,
snapshot_fully_loaded=true}};
handle_call({fetch_levelzero, Slot}, _From, State) ->
{reply, lists:nth(Slot, State#state.levelzero_cache), State};
handle_call(close, _From, State) ->
{stop, normal, ok, State};
handle_call(doom, _From, State) ->
leveled_log:log("P0030", []),
ManifestFP = State#state.root_path ++ "/" ++ ?MANIFEST_FP ++ "/",
FilesFP = State#state.root_path ++ "/" ++ ?FILES_FP ++ "/",
{stop, normal, {ok, [ManifestFP, FilesFP]}, State}.
handle_cast({manifest_change, NewManifest}, State) ->
NewManSQN = leveled_pmanifest:get_manifest_sqn(NewManifest),
ok = leveled_pclerk:clerk_promptdeletions(State#state.clerk, NewManSQN),
{noreply, State#state{manifest = NewManifest, work_ongoing=false}};
handle_cast({release_snapshot, Snapshot}, State) ->
Manifest0 = leveled_pmanifest:release_snapshot(State#state.manifest,
Snapshot),
leveled_log:log("P0003", [Snapshot]),
{noreply, State#state{manifest=Manifest0}};
handle_cast({confirm_delete, Filename, FilePid}, State=#state{is_snapshot=Snap})
when Snap == false ->
case State#state.work_ongoing of
false ->
R2D = leveled_pmanifest:ready_to_delete(State#state.manifest,
Filename),
case R2D of
{true, M0} ->
leveled_log:log("P0005", [Filename]),
ok = leveled_sst:sst_deleteconfirmed(FilePid),
{noreply, State#state{manifest=M0}};
{false, _M0} ->
{noreply, State}
end;
true ->
% If there is ongoing work, then we can't safely update the pidmap
% as any change will be reverted when the manifest is passed back
% from the Clerk
{noreply, State}
end;
handle_cast({levelzero_complete, FN, StartKey, EndKey}, State) ->
leveled_log:log("P0029", []),
ManEntry = #manifest_entry{start_key=StartKey,
end_key=EndKey,
owner=State#state.levelzero_constructor,
filename=FN},
ManifestSQN = leveled_pmanifest:get_manifest_sqn(State#state.manifest) + 1,
UpdMan = leveled_pmanifest:insert_manifest_entry(State#state.manifest,
ManifestSQN,
0,
ManEntry),
% Prompt clerk to ask about work - do this for every L0 roll
UpdIndex = leveled_pmem:clear_index(State#state.levelzero_index),
ok = leveled_pclerk:clerk_prompt(State#state.clerk),
{noreply, State#state{levelzero_cache=[],
levelzero_index=UpdIndex,
levelzero_pending=false,
levelzero_constructor=undefined,
levelzero_size=0,
manifest=UpdMan,
persisted_sqn=State#state.ledger_sqn}};
handle_cast(work_for_clerk, State) ->
case State#state.levelzero_pending of
true ->
{noreply, State};
false ->
{WL, WC} = leveled_pmanifest:check_for_work(State#state.manifest,
?LEVEL_SCALEFACTOR),
case WC of
0 ->
{noreply, State#state{work_backlog=false}};
N when N > ?WORKQUEUE_BACKLOG_TOLERANCE ->
leveled_log:log("P0024", [N, true]),
[TL|_Tail] = WL,
ok = leveled_pclerk:clerk_push(State#state.clerk,
{TL, State#state.manifest}),
{noreply,
State#state{work_backlog=true, work_ongoing=true}};
N ->
leveled_log:log("P0024", [N, false]),
[TL|_Tail] = WL,
ok = leveled_pclerk:clerk_push(State#state.clerk,
{TL, State#state.manifest}),
{noreply,
State#state{work_backlog=false, work_ongoing=true}}
end
end.
handle_info(_Info, State) ->
{noreply, State}.
terminate(Reason, State=#state{is_snapshot=Snap}) when Snap == true ->
ok = pcl_releasesnapshot(State#state.source_penciller, self()),
leveled_log:log("P0007", [Reason]),
ok;
terminate(Reason, State) ->
%% Level 0 files lie outside of the manifest, and so if there is no L0
%% file present it is safe to write the current contents of memory. If
%% there is a L0 file present - then the memory can be dropped (it is
%% recoverable from the ledger, and there should not be a lot to recover
%% as presumably the ETS file has been recently flushed, hence the presence
%% of a L0 file).
%%
%% The penciller should close each file in the manifest, and cast a close
%% on the clerk.
ok = leveled_pclerk:clerk_close(State#state.clerk),
leveled_log:log("P0008", [Reason]),
L0_Present = leveled_pmanifest:key_lookup(State#state.manifest, 0, all),
L0_Left = State#state.levelzero_size > 0,
case {State#state.levelzero_pending, L0_Present, L0_Left} of
{false, false, true} ->
L0Pid = roll_memory(State, true),
ok = leveled_sst:sst_close(L0Pid);
StatusTuple ->
leveled_log:log("P0010", [StatusTuple])
end,
% Tidy shutdown of individual files
EntryCloseFun =
fun(ME) ->
ok = leveled_sst:sst_close(ME#manifest_entry.owner)
end,
leveled_pmanifest:close_manifest(State#state.manifest, EntryCloseFun),
leveled_log:log("P0011", []),
ok.
code_change(_OldVsn, State, _Extra) ->
{ok, State}.
%%%============================================================================
%%% Internal functions
%%%============================================================================
start_from_file(PCLopts) ->
RootPath = PCLopts#penciller_options.root_path,
MaxTableSize = case PCLopts#penciller_options.max_inmemory_tablesize of
undefined ->
?MAX_TABLESIZE;
M ->
M
end,
{ok, MergeClerk} = leveled_pclerk:clerk_new(self(), RootPath),
CoinToss = PCLopts#penciller_options.levelzero_cointoss,
% Used to randomly defer the writing of L0 file. Intended to help with
% vnode syncronisation issues (e.g. stop them all by default merging to
% level zero concurrently)
InitState = #state{clerk=MergeClerk,
root_path=RootPath,
levelzero_maxcachesize=MaxTableSize,
levelzero_cointoss=CoinToss,
levelzero_index=leveled_pmem:new_index()},
%% Open manifest
Manifest0 = leveled_pmanifest:open_manifest(RootPath),
OpenFun =
fun(FN) ->
{ok, Pid, {_FK, _LK}} = leveled_sst:sst_open(FN),
Pid
end,
SQNFun = fun leveled_sst:sst_getmaxsequencenumber/1,
{MaxSQN, Manifest1} = leveled_pmanifest:load_manifest(Manifest0,
OpenFun,
SQNFun),
leveled_log:log("P0014", [MaxSQN]),
ManSQN = leveled_pmanifest:get_manifest_sqn(Manifest1),
leveled_log:log("P0035", [ManSQN]),
%% Find any L0 files
L0FN = filepath(RootPath, ManSQN + 1, new_merge_files) ++ "_0_0.sst",
case filelib:is_file(L0FN) of
true ->
leveled_log:log("P0015", [L0FN]),
{ok,
L0Pid,
{L0StartKey, L0EndKey}} = leveled_sst:sst_open(L0FN),
L0SQN = leveled_sst:sst_getmaxsequencenumber(L0Pid),
L0Entry = #manifest_entry{start_key = L0StartKey,
end_key = L0EndKey,
filename = L0FN,
owner = L0Pid},
Manifest2 = leveled_pmanifest:insert_manifest_entry(Manifest1,
ManSQN + 1,
0,
L0Entry),
leveled_log:log("P0016", [L0SQN]),
LedgerSQN = max(MaxSQN, L0SQN),
{ok,
InitState#state{manifest = Manifest2,
ledger_sqn = LedgerSQN,
persisted_sqn = LedgerSQN}};
false ->
leveled_log:log("P0017", []),
{ok,
InitState#state{manifest = Manifest1,
ledger_sqn = MaxSQN,
persisted_sqn = MaxSQN}}
end.
update_levelzero(L0Size, {PushedTree, PushedIdx, MinSQN, MaxSQN},
LedgerSQN, L0Cache, State) ->
SW = os:timestamp(),
Update = leveled_pmem:add_to_cache(L0Size,
{PushedTree, MinSQN, MaxSQN},
LedgerSQN,
L0Cache),
UpdL0Index = leveled_pmem:add_to_index(PushedIdx,
State#state.levelzero_index,
length(L0Cache) + 1),
{UpdMaxSQN, NewL0Size, UpdL0Cache} = Update,
if
UpdMaxSQN >= LedgerSQN ->
UpdState = State#state{levelzero_cache=UpdL0Cache,
levelzero_size=NewL0Size,
levelzero_index=UpdL0Index,
ledger_sqn=UpdMaxSQN},
CacheTooBig = NewL0Size > State#state.levelzero_maxcachesize,
CacheMuchTooBig = NewL0Size > ?SUPER_MAX_TABLE_SIZE,
L0Free = not leveled_pmanifest:levelzero_present(State#state.manifest),
RandomFactor =
case State#state.levelzero_cointoss of
true ->
case random:uniform(?COIN_SIDECOUNT) of
1 ->
true;
_ ->
false
end;
false ->
true
end,
NoPendingManifestChange = not State#state.work_ongoing,
JitterCheck = RandomFactor or CacheMuchTooBig,
case {CacheTooBig, L0Free, JitterCheck, NoPendingManifestChange} of
{true, true, true, true} ->
L0Constructor = roll_memory(UpdState, false),
leveled_log:log_timer("P0031", [], SW),
UpdState#state{levelzero_pending=true,
levelzero_constructor=L0Constructor};
_ ->
leveled_log:log_timer("P0031", [], SW),
UpdState
end
end.
%% Casting a large object (the levelzero cache) to the gen_server did not lead
%% to an immediate return as expected. With 32K keys in the TreeList it could
%% take around 35-40ms.
%%
%% To avoid blocking this gen_server, the SST file can request each item of the
%% cache one at a time.
%%
%% The Wait is set to false to use a cast when calling this in normal operation
%% where as the Wait of true is used at shutdown
roll_memory(State, false) ->
FileName = levelzero_filename(State),
leveled_log:log("P0019", [FileName, State#state.ledger_sqn]),
PCL = self(),
FetchFun = fun(Slot) -> pcl_fetchlevelzero(PCL, Slot) end,
R = leveled_sst:sst_newlevelzero(FileName,
length(State#state.levelzero_cache),
FetchFun,
PCL,
State#state.ledger_sqn),
{ok, Constructor, _} = R,
Constructor;
roll_memory(State, true) ->
FileName = levelzero_filename(State),
FetchFun = fun(Slot) -> lists:nth(Slot, State#state.levelzero_cache) end,
KVList = leveled_pmem:to_list(length(State#state.levelzero_cache),
FetchFun),
R = leveled_sst:sst_new(FileName, 0, KVList, State#state.ledger_sqn),
{ok, Constructor, _} = R,
Constructor.
levelzero_filename(State) ->
ManSQN = leveled_pmanifest:get_manifest_sqn(State#state.manifest) + 1,
FileName = State#state.root_path
++ "/" ++ ?FILES_FP ++ "/"
++ integer_to_list(ManSQN) ++ "_0_0",
FileName.
timed_fetch_mem(Key, Hash, Manifest, L0Cache, L0Index, HeadTimer) ->
SW = os:timestamp(),
{R, Level} = fetch_mem(Key, Hash, Manifest, L0Cache, L0Index),
UpdHeadTimer =
case R of
not_present ->
leveled_log:head_timing(HeadTimer, SW, Level, not_present);
_ ->
leveled_log:head_timing(HeadTimer, SW, Level, found)
end,
{R, UpdHeadTimer}.
plain_fetch_mem(Key, Hash, Manifest, L0Cache, L0Index) ->
R = fetch_mem(Key, Hash, Manifest, L0Cache, L0Index),
element(1, R).
fetch_mem(Key, Hash, Manifest, L0Cache, L0Index) ->
PosList = leveled_pmem:check_index(Hash, L0Index),
L0Check = leveled_pmem:check_levelzero(Key, Hash, PosList, L0Cache),
case L0Check of
{false, not_found} ->
fetch(Key, Hash, Manifest, 0, fun timed_sst_get/3);
{true, KV} ->
{KV, 0}
end.
fetch(_Key, _Hash, _Manifest, ?MAX_LEVELS + 1, _FetchFun) ->
{not_present, basement};
fetch(Key, Hash, Manifest, Level, FetchFun) ->
case leveled_pmanifest:key_lookup(Manifest, Level, Key) of
false ->
fetch(Key, Hash, Manifest, Level + 1, FetchFun);
FP ->
case FetchFun(FP, Key, Hash) of
not_present ->
fetch(Key, Hash, Manifest, Level + 1, FetchFun);
ObjectFound ->
{ObjectFound, Level}
end
end.
timed_sst_get(PID, Key, Hash) ->
SW = os:timestamp(),
R = leveled_sst:sst_get(PID, Key, Hash),
T0 = timer:now_diff(os:timestamp(), SW),
case {T0, R} of
{T, R} when T < ?SLOW_FETCH ->
R;
{T, not_present} ->
leveled_log:log("PC016", [PID, T, not_present]),
not_present;
{T, R} ->
leveled_log:log("PC016", [PID, T, found]),
R
end.
compare_to_sqn(Obj, SQN) ->
case Obj of
not_present ->
false;
Obj ->
SQNToCompare = leveled_codec:strip_to_seqonly(Obj),
if
SQNToCompare > SQN ->
false;
true ->
true
end
end.
%% Looks to find the best choice for the next key across the levels (other
%% than in-memory table)
%% In finding the best choice, the next key in a given level may be a next
%% block or next file pointer which will need to be expanded
find_nextkey(QueryArray, StartKey, EndKey) ->
find_nextkey(QueryArray,
0,
{null, null},
StartKey,
EndKey,
?ITERATOR_SCANWIDTH).
find_nextkey(_QueryArray, LCnt, {null, null}, _StartKey, _EndKey, _Width)
when LCnt > ?MAX_LEVELS ->
% The array has been scanned wihtout finding a best key - must be
% exhausted - respond to indicate no more keys to be found by the
% iterator
no_more_keys;
find_nextkey(QueryArray, LCnt, {BKL, BestKV}, _StartKey, _EndKey, _Width)
when LCnt > ?MAX_LEVELS ->
% All levels have been scanned, so need to remove the best result from
% the array, and return that array along with the best key/sqn/status
% combination
{BKL, [BestKV|Tail]} = lists:keyfind(BKL, 1, QueryArray),
{lists:keyreplace(BKL, 1, QueryArray, {BKL, Tail}), BestKV};
find_nextkey(QueryArray, LCnt, {BestKeyLevel, BestKV},
StartKey, EndKey, Width) ->
% Get the next key at this level
{NextKey, RestOfKeys} = case lists:keyfind(LCnt, 1, QueryArray) of
false ->
{null, null};
{LCnt, []} ->
{null, null};
{LCnt, [NK|ROfKs]} ->
{NK, ROfKs}
end,
% Compare the next key at this level with the best key
case {NextKey, BestKeyLevel, BestKV} of
{null, BKL, BKV} ->
% There is no key at this level - go to the next level
find_nextkey(QueryArray,
LCnt + 1,
{BKL, BKV},
StartKey, EndKey, Width);
{{next, Owner, _SK}, BKL, BKV} ->
% The first key at this level is pointer to a file - need to query
% the file to expand this level out before proceeding
Pointer = {next, Owner, StartKey, EndKey},
UpdList = leveled_sst:expand_list_by_pointer(Pointer,
RestOfKeys,
Width),
NewEntry = {LCnt, UpdList},
% Need to loop around at this level (LCnt) as we have not yet
% examined a real key at this level
find_nextkey(lists:keyreplace(LCnt, 1, QueryArray, NewEntry),
LCnt,
{BKL, BKV},
StartKey, EndKey, Width);
{{pointer, SSTPid, Slot, PSK, PEK}, BKL, BKV} ->
% The first key at this level is pointer within a file - need to
% query the file to expand this level out before proceeding
Pointer = {pointer, SSTPid, Slot, PSK, PEK},
UpdList = leveled_sst:expand_list_by_pointer(Pointer,
RestOfKeys,
Width),
NewEntry = {LCnt, UpdList},
% Need to loop around at this level (LCnt) as we have not yet
% examined a real key at this level
find_nextkey(lists:keyreplace(LCnt, 1, QueryArray, NewEntry),
LCnt,
{BKL, BKV},
StartKey, EndKey, Width);
{{Key, Val}, null, null} ->
% No best key set - so can assume that this key is the best key,
% and check the lower levels
find_nextkey(QueryArray,
LCnt + 1,
{LCnt, {Key, Val}},
StartKey, EndKey, Width);
{{Key, Val}, _BKL, {BestKey, _BestVal}} when Key < BestKey ->
% There is a real key and a best key to compare, and the real key
% at this level is before the best key, and so is now the new best
% key
% The QueryArray is not modified until we have checked all levels
find_nextkey(QueryArray,
LCnt + 1,
{LCnt, {Key, Val}},
StartKey, EndKey, Width);
{{Key, Val}, BKL, {BestKey, BestVal}} when Key == BestKey ->
SQN = leveled_codec:strip_to_seqonly({Key, Val}),
BestSQN = leveled_codec:strip_to_seqonly({BestKey, BestVal}),
if
SQN =< BestSQN ->
% This is a dominated key, so we need to skip over it
NewEntry = {LCnt, RestOfKeys},
find_nextkey(lists:keyreplace(LCnt, 1, QueryArray, NewEntry),
LCnt + 1,
{BKL, {BestKey, BestVal}},
StartKey, EndKey, Width);
SQN > BestSQN ->
% There is a real key at the front of this level and it has
% a higher SQN than the best key, so we should use this as
% the best key
% But we also need to remove the dominated key from the
% lower level in the query array
OldBestEntry = lists:keyfind(BKL, 1, QueryArray),
{BKL, [{BestKey, BestVal}|BestTail]} = OldBestEntry,
find_nextkey(lists:keyreplace(BKL,
1,
QueryArray,
{BKL, BestTail}),
LCnt + 1,
{LCnt, {Key, Val}},
StartKey, EndKey, Width)
end;
{_, BKL, BKV} ->
% This is not the best key
find_nextkey(QueryArray,
LCnt + 1,
{BKL, BKV},
StartKey, EndKey, Width)
end.
keyfolder(IMMiter, SSTiter, StartKey, EndKey, {AccFun, Acc}) ->
keyfolder({IMMiter, SSTiter}, {StartKey, EndKey}, {AccFun, Acc}, -1).
keyfolder(_Iterators, _KeyRange, {_AccFun, Acc}, MaxKeys) when MaxKeys == 0 ->
Acc;
keyfolder({[], SSTiter}, KeyRange, {AccFun, Acc}, MaxKeys) ->
{StartKey, EndKey} = KeyRange,
case find_nextkey(SSTiter, StartKey, EndKey) of
no_more_keys ->
Acc;
{NxSSTiter, {SSTKey, SSTVal}} ->
Acc1 = AccFun(SSTKey, SSTVal, Acc),
keyfolder({[], NxSSTiter}, KeyRange, {AccFun, Acc1}, MaxKeys - 1)
end;
keyfolder({[{IMMKey, IMMVal}|NxIMMiterator], SSTiterator}, KeyRange,
{AccFun, Acc}, MaxKeys) ->
{StartKey, EndKey} = KeyRange,
case {IMMKey < StartKey, leveled_codec:endkey_passed(EndKey, IMMKey)} of
{true, _} ->
% Normally everything is pre-filterd, but the IMM iterator can
% be re-used and so may be behind the StartKey if the StartKey has
% advanced from the previous use
keyfolder({NxIMMiterator, SSTiterator},
KeyRange,
{AccFun, Acc},
MaxKeys);
{false, true} ->
% There are no more keys in-range in the in-memory
% iterator, so take action as if this iterator is empty
% (see above)
keyfolder({[], SSTiterator},
KeyRange,
{AccFun, Acc},
MaxKeys);
{false, false} ->
case find_nextkey(SSTiterator, StartKey, EndKey) of
no_more_keys ->
% No more keys in range in the persisted store, so use the
% in-memory KV as the next
Acc1 = AccFun(IMMKey, IMMVal, Acc),
keyfolder({NxIMMiterator, SSTiterator},
KeyRange,
{AccFun, Acc1},
MaxKeys - 1);
{NxSSTiterator, {SSTKey, SSTVal}} ->
% There is a next key, so need to know which is the
% next key between the two (and handle two keys
% with different sequence numbers).
case leveled_codec:key_dominates({IMMKey,
IMMVal},
{SSTKey,
SSTVal}) of
left_hand_first ->
Acc1 = AccFun(IMMKey, IMMVal, Acc),
keyfolder({NxIMMiterator, SSTiterator},
KeyRange,
{AccFun, Acc1},
MaxKeys - 1);
right_hand_first ->
Acc1 = AccFun(SSTKey, SSTVal, Acc),
keyfolder({[{IMMKey, IMMVal}|NxIMMiterator],
NxSSTiterator},
KeyRange,
{AccFun, Acc1},
MaxKeys - 1);
left_hand_dominant ->
Acc1 = AccFun(IMMKey, IMMVal, Acc),
keyfolder({NxIMMiterator, NxSSTiterator},
KeyRange,
{AccFun, Acc1},
MaxKeys - 1)
end
end
end.
filepath(RootPath, files) ->
FP = RootPath ++ "/" ++ ?FILES_FP,
filelib:ensure_dir(FP ++ "/"),
FP.
filepath(RootPath, NewMSN, new_merge_files) ->
filepath(RootPath, files) ++ "/" ++ integer_to_list(NewMSN).
%%%============================================================================
%%% Test
%%%============================================================================
-ifdef(TEST).
generate_randomkeys({Count, StartSQN}) ->
generate_randomkeys(Count, StartSQN, []);
generate_randomkeys(Count) ->
generate_randomkeys(Count, 0, []).
generate_randomkeys(0, _SQN, Acc) ->
lists:reverse(Acc);
generate_randomkeys(Count, SQN, Acc) ->
K = {o,
lists:concat(["Bucket", random:uniform(1024)]),
lists:concat(["Key", random:uniform(1024)]),
null},
RandKey = {K,
{SQN,
{active, infinity},
leveled_codec:magic_hash(K),
null}},
generate_randomkeys(Count - 1, SQN + 1, [RandKey|Acc]).
clean_testdir(RootPath) ->
clean_subdir(leveled_pmanifest:filepath(RootPath, manifest)),
clean_subdir(filepath(RootPath, files)).
clean_subdir(DirPath) ->
case filelib:is_dir(DirPath) of
true ->
{ok, Files} = file:list_dir(DirPath),
lists:foreach(fun(FN) ->
File = filename:join(DirPath, FN),
ok = file:delete(File),
io:format("Success deleting ~s~n", [File])
end,
Files);
false ->
ok
end.
maybe_pause_push(PCL, KL) ->
T0 = [],
I0 = leveled_pmem:new_index(),
T1 = lists:foldl(fun({K, V}, {AccSL, AccIdx, MinSQN, MaxSQN}) ->
UpdSL = [{K, V}|AccSL],
SQN = leveled_codec:strip_to_seqonly({K, V}),
H = leveled_codec:magic_hash(K),
UpdIdx = leveled_pmem:prepare_for_index(AccIdx, H),
{UpdSL, UpdIdx, min(SQN, MinSQN), max(SQN, MaxSQN)}
end,
{T0, I0, infinity, 0},
KL),
SL = element(1, T1),
Tree = leveled_tree:from_orderedlist(lists:ukeysort(1, SL), ?CACHE_TYPE),
T2 = setelement(1, T1, Tree),
case pcl_pushmem(PCL, T2) of
returned ->
timer:sleep(50),
maybe_pause_push(PCL, KL);
ok ->
ok
end.
%% old test data doesn't have the magic hash
add_missing_hash({K, {SQN, ST, MD}}) ->
{K, {SQN, ST, leveled_codec:magic_hash(K), MD}}.
simple_server_test() ->
RootPath = "../test/ledger",
clean_testdir(RootPath),
{ok, PCL} = pcl_start(#penciller_options{root_path=RootPath,
max_inmemory_tablesize=1000}),
Key1_Pre = {{o,"Bucket0001", "Key0001", null},
{1, {active, infinity}, null}},
Key1 = add_missing_hash(Key1_Pre),
KL1 = generate_randomkeys({1000, 2}),
Key2_Pre = {{o,"Bucket0002", "Key0002", null},
{1002, {active, infinity}, null}},
Key2 = add_missing_hash(Key2_Pre),
KL2 = generate_randomkeys({900, 1003}),
% Keep below the max table size by having 900 not 1000
Key3_Pre = {{o,"Bucket0003", "Key0003", null},
{2003, {active, infinity}, null}},
Key3 = add_missing_hash(Key3_Pre),
KL3 = generate_randomkeys({1000, 2004}),
Key4_Pre = {{o,"Bucket0004", "Key0004", null},
{3004, {active, infinity}, null}},
Key4 = add_missing_hash(Key4_Pre),
KL4 = generate_randomkeys({1000, 3005}),
ok = maybe_pause_push(PCL, [Key1]),
?assertMatch(Key1, pcl_fetch(PCL, {o,"Bucket0001", "Key0001", null})),
ok = maybe_pause_push(PCL, KL1),
?assertMatch(Key1, pcl_fetch(PCL, {o,"Bucket0001", "Key0001", null})),
ok = maybe_pause_push(PCL, [Key2]),
?assertMatch(Key1, pcl_fetch(PCL, {o,"Bucket0001", "Key0001", null})),
?assertMatch(Key2, pcl_fetch(PCL, {o,"Bucket0002", "Key0002", null})),
ok = maybe_pause_push(PCL, KL2),
?assertMatch(Key2, pcl_fetch(PCL, {o,"Bucket0002", "Key0002", null})),
ok = maybe_pause_push(PCL, [Key3]),
?assertMatch(Key1, pcl_fetch(PCL, {o,"Bucket0001", "Key0001", null})),
?assertMatch(Key2, pcl_fetch(PCL, {o,"Bucket0002", "Key0002", null})),
?assertMatch(Key3, pcl_fetch(PCL, {o,"Bucket0003", "Key0003", null})),
timer:sleep(200),
% This sleep should make sure that the merge to L1 has occurred
% This will free up the L0 slot for the remainder to be written in shutdown
ok = pcl_close(PCL),
{ok, PCLr} = pcl_start(#penciller_options{root_path=RootPath,
max_inmemory_tablesize=1000}),
?assertMatch(2003, pcl_getstartupsequencenumber(PCLr)),
% ok = maybe_pause_push(PCLr, [Key2] ++ KL2 ++ [Key3]),
?assertMatch(Key1, pcl_fetch(PCLr, {o,"Bucket0001", "Key0001", null})),
?assertMatch(Key2, pcl_fetch(PCLr, {o,"Bucket0002", "Key0002", null})),
?assertMatch(Key3, pcl_fetch(PCLr, {o,"Bucket0003", "Key0003", null})),
ok = maybe_pause_push(PCLr, KL3),
ok = maybe_pause_push(PCLr, [Key4]),
ok = maybe_pause_push(PCLr, KL4),
?assertMatch(Key1, pcl_fetch(PCLr, {o,"Bucket0001", "Key0001", null})),
?assertMatch(Key2, pcl_fetch(PCLr, {o,"Bucket0002", "Key0002", null})),
?assertMatch(Key3, pcl_fetch(PCLr, {o,"Bucket0003", "Key0003", null})),
?assertMatch(Key4, pcl_fetch(PCLr, {o,"Bucket0004", "Key0004", null})),
SnapOpts = #penciller_options{start_snapshot = true,
source_penciller = PCLr},
{ok, PclSnap} = pcl_start(SnapOpts),
leveled_bookie:load_snapshot(PclSnap,
leveled_bookie:empty_ledgercache()),
?assertMatch(Key1, pcl_fetch(PclSnap, {o,"Bucket0001", "Key0001", null})),
?assertMatch(Key2, pcl_fetch(PclSnap, {o,"Bucket0002", "Key0002", null})),
?assertMatch(Key3, pcl_fetch(PclSnap, {o,"Bucket0003", "Key0003", null})),
?assertMatch(Key4, pcl_fetch(PclSnap, {o,"Bucket0004", "Key0004", null})),
?assertMatch(true, pcl_checksequencenumber(PclSnap,
{o,
"Bucket0001",
"Key0001",
null},
1)),
?assertMatch(true, pcl_checksequencenumber(PclSnap,
{o,
"Bucket0002",
"Key0002",
null},
1002)),
?assertMatch(true, pcl_checksequencenumber(PclSnap,
{o,
"Bucket0003",
"Key0003",
null},
2003)),
?assertMatch(true, pcl_checksequencenumber(PclSnap,
{o,
"Bucket0004",
"Key0004",
null},
3004)),
% Add some more keys and confirm that check sequence number still
% sees the old version in the previous snapshot, but will see the new version
% in a new snapshot
Key1A_Pre = {{o,"Bucket0001", "Key0001", null},
{4005, {active, infinity}, null}},
Key1A = add_missing_hash(Key1A_Pre),
KL1A = generate_randomkeys({2000, 4006}),
ok = maybe_pause_push(PCLr, [Key1A]),
ok = maybe_pause_push(PCLr, KL1A),
?assertMatch(true, pcl_checksequencenumber(PclSnap,
{o,
"Bucket0001",
"Key0001",
null},
1)),
ok = pcl_close(PclSnap),
{ok, PclSnap2} = pcl_start(SnapOpts),
leveled_bookie:load_snapshot(PclSnap2, leveled_bookie:empty_ledgercache()),
?assertMatch(false, pcl_checksequencenumber(PclSnap2,
{o,
"Bucket0001",
"Key0001",
null},
1)),
?assertMatch(true, pcl_checksequencenumber(PclSnap2,
{o,
"Bucket0001",
"Key0001",
null},
4005)),
?assertMatch(true, pcl_checksequencenumber(PclSnap2,
{o,
"Bucket0002",
"Key0002",
null},
1002)),
ok = pcl_close(PclSnap2),
ok = pcl_close(PCLr),
clean_testdir(RootPath).
simple_findnextkey_test() ->
QueryArray = [
{2, [{{o, "Bucket1", "Key1"}, {5, {active, infinity}, null}},
{{o, "Bucket1", "Key5"}, {4, {active, infinity}, null}}]},
{3, [{{o, "Bucket1", "Key3"}, {3, {active, infinity}, null}}]},
{5, [{{o, "Bucket1", "Key2"}, {2, {active, infinity}, null}}]}
],
{Array2, KV1} = find_nextkey(QueryArray,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key1"}, {5, {active, infinity}, null}}, KV1),
{Array3, KV2} = find_nextkey(Array2,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key2"}, {2, {active, infinity}, null}}, KV2),
{Array4, KV3} = find_nextkey(Array3,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key3"}, {3, {active, infinity}, null}}, KV3),
{Array5, KV4} = find_nextkey(Array4,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key5"}, {4, {active, infinity}, null}}, KV4),
ER = find_nextkey(Array5,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch(no_more_keys, ER).
sqnoverlap_findnextkey_test() ->
QueryArray = [
{2, [{{o, "Bucket1", "Key1"}, {5, {active, infinity}, 0, null}},
{{o, "Bucket1", "Key5"}, {4, {active, infinity}, 0, null}}]},
{3, [{{o, "Bucket1", "Key3"}, {3, {active, infinity}, 0, null}}]},
{5, [{{o, "Bucket1", "Key5"}, {2, {active, infinity}, 0, null}}]}
],
{Array2, KV1} = find_nextkey(QueryArray,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key1"}, {5, {active, infinity}, 0, null}},
KV1),
{Array3, KV2} = find_nextkey(Array2,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key3"}, {3, {active, infinity}, 0, null}},
KV2),
{Array4, KV3} = find_nextkey(Array3,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key5"}, {4, {active, infinity}, 0, null}},
KV3),
ER = find_nextkey(Array4,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch(no_more_keys, ER).
sqnoverlap_otherway_findnextkey_test() ->
QueryArray = [
{2, [{{o, "Bucket1", "Key1"}, {5, {active, infinity}, 0, null}},
{{o, "Bucket1", "Key5"}, {1, {active, infinity}, 0, null}}]},
{3, [{{o, "Bucket1", "Key3"}, {3, {active, infinity}, 0, null}}]},
{5, [{{o, "Bucket1", "Key5"}, {2, {active, infinity}, 0, null}}]}
],
{Array2, KV1} = find_nextkey(QueryArray,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key1"}, {5, {active, infinity}, 0, null}},
KV1),
{Array3, KV2} = find_nextkey(Array2,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key3"}, {3, {active, infinity}, 0, null}},
KV2),
{Array4, KV3} = find_nextkey(Array3,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch({{o, "Bucket1", "Key5"}, {2, {active, infinity}, 0, null}},
KV3),
ER = find_nextkey(Array4,
{o, "Bucket1", "Key0"},
{o, "Bucket1", "Key5"}),
?assertMatch(no_more_keys, ER).
foldwithimm_simple_test() ->
QueryArray = [
{2, [{{o, "Bucket1", "Key1", null},
{5, {active, infinity}, 0, null}},
{{o, "Bucket1", "Key5", null},
{1, {active, infinity}, 0, null}}]},
{3, [{{o, "Bucket1", "Key3", null},
{3, {active, infinity}, 0, null}}]},
{5, [{{o, "Bucket1", "Key5", null},
{2, {active, infinity}, 0, null}}]}
],
KL1A = [{{o, "Bucket1", "Key6", null}, {7, {active, infinity}, 0, null}},
{{o, "Bucket1", "Key1", null}, {8, {active, infinity}, 0, null}},
{{o, "Bucket1", "Key8", null}, {9, {active, infinity}, 0, null}}],
IMM2 = leveled_tree:from_orderedlist(lists:ukeysort(1, KL1A), ?CACHE_TYPE),
IMMiter = leveled_tree:match_range({o, "Bucket1", "Key1", null},
{o, null, null, null},
IMM2),
AccFun = fun(K, V, Acc) -> SQN = leveled_codec:strip_to_seqonly({K, V}),
Acc ++ [{K, SQN}] end,
Acc = keyfolder(IMMiter,
QueryArray,
{o, "Bucket1", "Key1", null}, {o, "Bucket1", "Key6", null},
{AccFun, []}),
?assertMatch([{{o, "Bucket1", "Key1", null}, 8},
{{o, "Bucket1", "Key3", null}, 3},
{{o, "Bucket1", "Key5", null}, 2},
{{o, "Bucket1", "Key6", null}, 7}], Acc),
IMMiterA = [{{o, "Bucket1", "Key1", null},
{8, {active, infinity}, 0, null}}],
AccA = keyfolder(IMMiterA,
QueryArray,
{o, "Bucket1", "Key1", null}, {o, "Bucket1", "Key6", null},
{AccFun, []}),
?assertMatch([{{o, "Bucket1", "Key1", null}, 8},
{{o, "Bucket1", "Key3", null}, 3},
{{o, "Bucket1", "Key5", null}, 2}], AccA),
KL1B = [{{o, "Bucket1", "Key4", null}, {10, {active, infinity}, 0, null}}|KL1A],
IMM3 = leveled_tree:from_orderedlist(lists:ukeysort(1, KL1B), ?CACHE_TYPE),
IMMiterB = leveled_tree:match_range({o, "Bucket1", "Key1", null},
{o, null, null, null},
IMM3),
AccB = keyfolder(IMMiterB,
QueryArray,
{o, "Bucket1", "Key1", null}, {o, "Bucket1", "Key6", null},
{AccFun, []}),
?assertMatch([{{o, "Bucket1", "Key1", null}, 8},
{{o, "Bucket1", "Key3", null}, 3},
{{o, "Bucket1", "Key4", null}, 10},
{{o, "Bucket1", "Key5", null}, 2},
{{o, "Bucket1", "Key6", null}, 7}], AccB).
create_file_test() ->
Filename = "../test/new_file.sst",
ok = file:write_file(Filename, term_to_binary("hello")),
KVL = lists:usort(generate_randomkeys(10000)),
Tree = leveled_tree:from_orderedlist(KVL, ?CACHE_TYPE),
FetchFun = fun(Slot) -> lists:nth(Slot, [Tree]) end,
{ok,
SP,
noreply} = leveled_sst:sst_newlevelzero(Filename,
1,
FetchFun,
undefined,
10000),
lists:foreach(fun(X) ->
case checkready(SP) of
timeout ->
timer:sleep(X);
_ ->
ok
end end,
[50, 50, 50, 50, 50]),
{ok, SrcFN, StartKey, EndKey} = checkready(SP),
io:format("StartKey ~w EndKey ~w~n", [StartKey, EndKey]),
?assertMatch({o, _, _, _}, StartKey),
?assertMatch({o, _, _, _}, EndKey),
?assertMatch("../test/new_file.sst", SrcFN),
ok = leveled_sst:sst_clear(SP),
{ok, Bin} = file:read_file("../test/new_file.sst.discarded"),
?assertMatch("hello", binary_to_term(Bin)).
checkready(Pid) ->
try
leveled_sst:sst_checkready(Pid)
catch
exit:{timeout, _} ->
timeout
end.
coverage_cheat_test() ->
{noreply, _State0} = handle_info(timeout, #state{}),
{ok, _State1} = code_change(null, #state{}, null).
-endif.