leveled/test/end_to_end/tictac_SUITE.erl
Martin Sumner d45356a4f7
Extend perf_SUITE (#434)
* Extend perf_SUITE

This is v6 of the perf_SUITE tests.  The test adds a complex index entry to every object, and then adds a new test phase to test regex queries.

There are three profiles added so the full, mini and profiling versions of perf_SUITE can be run without having to edit the file itself:

e.g. ./rebar3 as perf_mini do ct --suite=test/end_to_end/perf_SUITE

When testing as `perf_prof` summarised versions of the eprof results are now printed to screen.

The volume of keys within the full test suite has been dropped ... just to make life easier so that test run times are not excessively increase by the new features.

* Load chunk in spawned processes

Assume to make the job of gs easier - name makes a massive difference to load time in OTP 24.

* Correctly account for pause

alos try and improve test stability by increasing pause

* Add microstate accounting to profile

* Add memory tracking during test phases

Identify and log out memory usage by test phase

* Use macros instead (#437)

* Don't print memory to screen in standard ct test

---------

Co-authored-by: Thomas Arts <thomas.arts@quviq.com>
2024-07-15 20:49:21 +01:00

879 lines
34 KiB
Erlang

-module(tictac_SUITE).
-include_lib("common_test/include/ct.hrl").
-include("include/leveled.hrl").
-export([all/0]).
-export([
many_put_compare/1,
index_compare/1,
basic_headonly/1,
tuplebuckets_headonly/1
]).
all() -> [
many_put_compare,
index_compare,
basic_headonly,
tuplebuckets_headonly
].
-define(LMD_FORMAT, "~4..0w~2..0w~2..0w~2..0w~2..0w").
-define(V1_VERS, 1).
-define(MAGIC, 53). % riak_kv -> riak_object
many_put_compare(_Config) ->
TreeSize = small,
SegmentCount = 256 * 256,
% Test requires multiple different databases, so want to mount them all
% on individual file paths
RootPathA = testutil:reset_filestructure("testA"),
RootPathB = testutil:reset_filestructure("testB"),
RootPathC = testutil:reset_filestructure("testC"),
RootPathD = testutil:reset_filestructure("testD"),
% Start the first database, load a test object, close it, start it again
StartOpts1 = [{root_path, RootPathA},
{max_pencillercachesize, 16000},
{sync_strategy, riak_sync}],
{ok, Bookie1} = leveled_bookie:book_start(StartOpts1),
{B1, K1, V1, S1, MD} = {"Bucket",
"Key1.1.4567.4321",
"Value1",
[],
[{"MDK1", "MDV1"}]},
{TestObject, TestSpec} = testutil:generate_testobject(B1, K1, V1, S1, MD),
ok = testutil:book_riakput(Bookie1, TestObject, TestSpec),
testutil:check_forobject(Bookie1, TestObject),
ok = leveled_bookie:book_close(Bookie1),
StartOpts2 = [{root_path, RootPathA},
{max_journalsize, 500000000},
{max_pencillercachesize, 32000},
{sync_strategy, testutil:sync_strategy()}],
{ok, Bookie2} = leveled_bookie:book_start(StartOpts2),
testutil:check_forobject(Bookie2, TestObject),
% Generate 200K objects to be sued within the test, and load them into
% the first store (outputting the generated objects as a list of lists)
% to be used elsewhere
GenList = [2, 20002, 40002, 60002, 80002,
100002, 120002, 140002, 160002, 180002],
CLs = testutil:load_objects(20000,
GenList,
Bookie2,
TestObject,
fun testutil:generate_smallobjects/2,
20000),
% Start a new store, and load the same objects (except fot the original
% test object) into this store
StartOpts3 = [{root_path, RootPathB},
{max_journalsize, 200000000},
{max_pencillercachesize, 16000},
{sync_strategy, testutil:sync_strategy()}],
{ok, Bookie3} = leveled_bookie:book_start(StartOpts3),
lists:foreach(fun(ObjL) -> testutil:riakload(Bookie3, ObjL) end, CLs),
% Now run a tictac query against both stores to see the extent to which
% state between stores is consistent
TicTacQ = {tictactree_obj,
{o_rkv, "Bucket", null, null, true},
TreeSize,
fun(_B, _K) -> accumulate end},
{async, TreeAFolder} = leveled_bookie:book_returnfolder(Bookie2, TicTacQ),
{async, TreeBFolder} = leveled_bookie:book_returnfolder(Bookie3, TicTacQ),
SWA0 = os:timestamp(),
TreeA = TreeAFolder(),
io:format("Build tictac tree with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWA0)]),
SWB0 = os:timestamp(),
TreeB = TreeBFolder(),
io:format("Build tictac tree with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWB0)]),
SWC0 = os:timestamp(),
SegList0 = leveled_tictac:find_dirtyleaves(TreeA, TreeB),
io:format("Compare tictac trees with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWC0)]),
io:format("Tree comparison shows ~w different leaves~n",
[length(SegList0)]),
AltList =
leveled_tictac:find_dirtyleaves(TreeA,
leveled_tictac:new_tree(0, TreeSize)),
io:format("Tree comparison shows ~w altered leaves~n",
[length(AltList)]),
true = length(SegList0) == 1,
% only the test object should be different
true = length(AltList) > 10000,
% check there are a significant number of differences from empty
WrongPartitionTicTacQ = {tictactree_obj,
{o_rkv, "Bucket", null, null, false},
TreeSize,
fun(_B, _K) -> pass end},
{async, TreeAFolder_WP} =
leveled_bookie:book_returnfolder(Bookie2, WrongPartitionTicTacQ),
TreeAWP = TreeAFolder_WP(),
DoubleEmpty =
leveled_tictac:find_dirtyleaves(TreeAWP,
leveled_tictac:new_tree(0, TreeSize)),
true = length(DoubleEmpty) == 0,
% Now run the same query by putting the tree-building responsibility onto
% the fold_objects_fun
ExtractClockFun =
fun(Key, Value) ->
{proxy_object, HeadBin, _Size, _FetchFun} = binary_to_term(Value),
<<?MAGIC:8/integer, ?V1_VERS:8/integer, VclockLen:32/integer,
VclockBin:VclockLen/binary, _Rest/binary>> = HeadBin,
case is_binary(Key) of
true ->
{Key,
lists:sort(binary_to_term(VclockBin))};
false ->
{term_to_binary(Key),
lists:sort(binary_to_term(VclockBin))}
end
end,
FoldObjectsFun =
fun(_Bucket, Key, Value, Acc) ->
leveled_tictac:add_kv(Acc, Key, Value, ExtractClockFun)
end,
FoldAccT = {FoldObjectsFun, leveled_tictac:new_tree(0, TreeSize)},
{async, TreeAObjFolder0} =
leveled_bookie:book_headfold(Bookie2,
o_rkv,
{range, "Bucket", all},
FoldAccT,
false,
true,
false),
SWB0Obj = os:timestamp(),
TreeAObj0 = TreeAObjFolder0(),
io:format("Build tictac tree via object fold with no "++
"presence check and 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWB0Obj)]),
true = length(leveled_tictac:find_dirtyleaves(TreeA, TreeAObj0)) == 0,
InitAccTree = leveled_tictac:new_tree(0, TreeSize),
{async, TreeAObjFolder1} =
leveled_bookie:book_headfold(Bookie2,
?RIAK_TAG,
{range, "Bucket", all},
{FoldObjectsFun,
InitAccTree},
true, true, false),
SWB1Obj = os:timestamp(),
TreeAObj1 = TreeAObjFolder1(),
io:format("Build tictac tree via object fold with "++
"presence check and 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWB1Obj)]),
true = length(leveled_tictac:find_dirtyleaves(TreeA, TreeAObj1)) == 0,
% For an exportable comparison, want hash to be based on something not
% coupled to erlang language - so use exportable query
AltExtractFun =
fun(K, V) ->
{proxy_object, HeadBin, _Size, _FetchFun} = binary_to_term(V),
<<?MAGIC:8/integer, ?V1_VERS:8/integer, VclockLen:32/integer,
VclockBin:VclockLen/binary, _Rest/binary>> = HeadBin,
{term_to_binary(K), VclockBin}
end,
AltFoldObjectsFun =
fun(_Bucket, Key, Value, Acc) ->
leveled_tictac:add_kv(Acc, Key, Value, AltExtractFun)
end,
{async, TreeAAltObjFolder0} =
leveled_bookie:book_headfold(Bookie2,
?RIAK_TAG,
{range, "Bucket", all},
{AltFoldObjectsFun,
InitAccTree},
false, true, false),
SWB2Obj = os:timestamp(),
TreeAAltObj = TreeAAltObjFolder0(),
io:format("Build tictac tree via object fold with no "++
"presence check and 200K objects and alt hash in ~w~n",
[timer:now_diff(os:timestamp(), SWB2Obj)]),
{async, TreeBAltObjFolder0} =
leveled_bookie:book_headfold(Bookie3,
?RIAK_TAG,
{range, "Bucket", all},
{AltFoldObjectsFun,
InitAccTree},
false, true, false),
SWB3Obj = os:timestamp(),
TreeBAltObj = TreeBAltObjFolder0(),
io:format("Build tictac tree via object fold with no "++
"presence check and 200K objects and alt hash in ~w~n",
[timer:now_diff(os:timestamp(), SWB3Obj)]),
DL_ExportFold =
length(leveled_tictac:find_dirtyleaves(TreeBAltObj, TreeAAltObj)),
io:format("Found dirty leaves with exportable comparison of ~w~n",
[DL_ExportFold]),
true = DL_ExportFold == 1,
%% Finding differing keys
FoldKeysFun =
fun(SegListToFind) ->
fun(_B, K, Acc) ->
Seg = get_segment(K, SegmentCount),
case lists:member(Seg, SegListToFind) of
true ->
[K|Acc];
false ->
Acc
end
end
end,
SegQuery = {keylist, o_rkv, "Bucket", {FoldKeysFun(SegList0), []}},
{async, SegKeyFinder} =
leveled_bookie:book_returnfolder(Bookie2, SegQuery),
SWSKL0 = os:timestamp(),
SegKeyList = SegKeyFinder(),
io:format("Finding ~w keys in ~w dirty segments in ~w~n",
[length(SegKeyList),
length(SegList0),
timer:now_diff(os:timestamp(), SWSKL0)]),
true = length(SegKeyList) >= 1,
true = length(SegKeyList) < 10,
true = lists:member("Key1.1.4567.4321", SegKeyList),
% Now remove the object which represents the difference between these
% stores and confirm that the tictac trees will now match
testutil:book_riakdelete(Bookie2, B1, K1, []),
{async, TreeAFolder0} = leveled_bookie:book_returnfolder(Bookie2, TicTacQ),
SWA1 = os:timestamp(),
TreeA0 = TreeAFolder0(),
io:format("Build tictac tree with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWA1)]),
SegList1 = leveled_tictac:find_dirtyleaves(TreeA0, TreeB),
io:format("Tree comparison following delete shows ~w different leaves~n",
[length(SegList1)]),
true = length(SegList1) == 0,
% Removed test object so tictac trees should match
ok = testutil:book_riakput(Bookie3, TestObject, TestSpec),
{async, TreeBFolder0} = leveled_bookie:book_returnfolder(Bookie3, TicTacQ),
SWB1 = os:timestamp(),
TreeB0 = TreeBFolder0(),
io:format("Build tictac tree with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWB1)]),
SegList2 = leveled_tictac:find_dirtyleaves(TreeA0, TreeB0),
true = SegList2 == SegList0,
% There is an identical difference now the difference is on Bookie3 not
% Bookie 2 (compared to it being in Bookie2 not Bookie3)
ok = leveled_bookie:book_close(Bookie3),
% Replace Bookie 3 with two stores Bookie 4 and Bookie 5 where the ojects
% have been randomly split between the stores
StartOpts4 = [{root_path, RootPathC},
{max_journalsize, 200000000},
{max_pencillercachesize, 24000},
{sync_strategy, testutil:sync_strategy()}],
{ok, Bookie4} = leveled_bookie:book_start(StartOpts4),
StartOpts5 = [{root_path, RootPathD},
{max_journalsize, 200000000},
{max_pencillercachesize, 24000},
{sync_strategy, testutil:sync_strategy()}],
{ok, Bookie5} = leveled_bookie:book_start(StartOpts5),
SplitFun =
fun(Obj) ->
case erlang:phash2(Obj) rem 2 of
0 ->
true;
1 ->
false
end
end,
lists:foreach(fun(ObjL) ->
{ObjLA, ObjLB} = lists:partition(SplitFun, ObjL),
testutil:riakload(Bookie4, ObjLA),
testutil:riakload(Bookie5, ObjLB)
end,
CLs),
% query both the stores, then merge the trees - the result should be the
% same as the result from the tree created aginst the store with both
% partitions
{async, TreeC0Folder} = leveled_bookie:book_returnfolder(Bookie4, TicTacQ),
{async, TreeC1Folder} = leveled_bookie:book_returnfolder(Bookie5, TicTacQ),
SWD0 = os:timestamp(),
TreeC0 = TreeC0Folder(),
io:format("Build tictac tree with 100K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWD0)]),
SWD1 = os:timestamp(),
TreeC1 = TreeC1Folder(),
io:format("Build tictac tree with 100K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWD1)]),
TreeC2 = leveled_tictac:merge_trees(TreeC0, TreeC1),
SegList3 = leveled_tictac:find_dirtyleaves(TreeC2, TreeB),
io:format("Tree comparison following delete shows ~w different leaves~n",
[length(SegList3)]),
true = length(SegList3) == 0,
ok = leveled_bookie:book_close(Bookie2),
ok = leveled_bookie:book_close(Bookie4),
ok = leveled_bookie:book_close(Bookie5).
index_compare(_Config) ->
TreeSize = xxsmall,
LS = 2000,
JS = 50000000,
SS = testutil:sync_strategy(),
SegmentCount = 64 * 64,
% Test requires multiple different databases, so want to mount them all
% on individual file paths
RootPathA = testutil:reset_filestructure("testA"),
RootPathB = testutil:reset_filestructure("testB"),
RootPathC = testutil:reset_filestructure("testC"),
RootPathD = testutil:reset_filestructure("testD"),
% Book1A to get all objects
{ok, Book1A} = leveled_bookie:book_start(RootPathA, LS, JS, SS),
% Book1B/C/D will have objects partitioned across it
{ok, Book1B} = leveled_bookie:book_start(RootPathB, LS, JS, SS),
{ok, Book1C} = leveled_bookie:book_start(RootPathC, LS, JS, SS),
{ok, Book1D} = leveled_bookie:book_start(RootPathD, LS, JS, SS),
% Generate nine lists of objects
BucketBin = list_to_binary("Bucket"),
GenMapFun =
fun(_X) ->
V = testutil:get_compressiblevalue(),
Indexes = testutil:get_randomindexes_generator(8),
testutil:generate_objects(10000, binary_uuid, [], V, Indexes)
end,
ObjLists = lists:map(GenMapFun, lists:seq(1, 9)),
% Load all nine lists into Book1A
lists:foreach(fun(ObjL) -> testutil:riakload(Book1A, ObjL) end,
ObjLists),
% Split nine lists across Book1B to Book1D, three object lists in each
lists:foreach(fun(ObjL) -> testutil:riakload(Book1B, ObjL) end,
lists:sublist(ObjLists, 1, 3)),
lists:foreach(fun(ObjL) -> testutil:riakload(Book1C, ObjL) end,
lists:sublist(ObjLists, 4, 3)),
lists:foreach(fun(ObjL) -> testutil:riakload(Book1D, ObjL) end,
lists:sublist(ObjLists, 7, 3)),
GetTicTacTreeFun =
fun(X, Bookie) ->
SW = os:timestamp(),
ST = <<"!">>,
ET = <<"|">>,
Q = {tictactree_idx,
{BucketBin,
list_to_binary("idx" ++ integer_to_list(X) ++ "_bin"),
ST,
ET},
TreeSize,
fun(_B, _K) -> accumulate end},
{async, Folder} = leveled_bookie:book_returnfolder(Bookie, Q),
R = Folder(),
io:format("TicTac Tree for index ~w took " ++
"~w microseconds~n",
[X, timer:now_diff(os:timestamp(), SW)]),
R
end,
% Get a TicTac tree representing one of the indexes in Bucket A
TicTacTree1_Full = GetTicTacTreeFun(1, Book1A),
TicTacTree1_P1 = GetTicTacTreeFun(1, Book1B),
TicTacTree1_P2 = GetTicTacTreeFun(1, Book1C),
TicTacTree1_P3 = GetTicTacTreeFun(1, Book1D),
% Merge the tree across the partitions
TicTacTree1_Joined = lists:foldl(fun leveled_tictac:merge_trees/2,
TicTacTree1_P1,
[TicTacTree1_P2, TicTacTree1_P3]),
% Go compare! Also check we're not comparing empty trees
DL1_0 = leveled_tictac:find_dirtyleaves(TicTacTree1_Full,
TicTacTree1_Joined),
EmptyTree = leveled_tictac:new_tree(empty, TreeSize),
DL1_1 = leveled_tictac:find_dirtyleaves(TicTacTree1_Full, EmptyTree),
true = DL1_0 == [],
true = length(DL1_1) > 100,
ok = leveled_bookie:book_close(Book1A),
ok = leveled_bookie:book_close(Book1B),
ok = leveled_bookie:book_close(Book1C),
ok = leveled_bookie:book_close(Book1D),
% Double chekc all is well still after a restart
% Book1A to get all objects
{ok, Book2A} = leveled_bookie:book_start(RootPathA, LS, JS, SS),
% Book1B/C/D will have objects partitioned across it
{ok, Book2B} = leveled_bookie:book_start(RootPathB, LS, JS, SS),
{ok, Book2C} = leveled_bookie:book_start(RootPathC, LS, JS, SS),
{ok, Book2D} = leveled_bookie:book_start(RootPathD, LS, JS, SS),
% Get a TicTac tree representing one of the indexes in Bucket A
TicTacTree2_Full = GetTicTacTreeFun(2, Book2A),
TicTacTree2_P1 = GetTicTacTreeFun(2, Book2B),
TicTacTree2_P2 = GetTicTacTreeFun(2, Book2C),
TicTacTree2_P3 = GetTicTacTreeFun(2, Book2D),
% Merge the tree across the partitions
TicTacTree2_Joined = lists:foldl(fun leveled_tictac:merge_trees/2,
TicTacTree2_P1,
[TicTacTree2_P2, TicTacTree2_P3]),
% Go compare! Also check we're not comparing empty trees
DL2_0 = leveled_tictac:find_dirtyleaves(TicTacTree2_Full,
TicTacTree2_Joined),
EmptyTree = leveled_tictac:new_tree(empty, TreeSize),
DL2_1 = leveled_tictac:find_dirtyleaves(TicTacTree2_Full, EmptyTree),
true = DL2_0 == [],
true = length(DL2_1) > 100,
IdxSpc = {add, <<"idx2_bin">>, <<"zz999">>},
{TestObj, TestSpc} =
testutil:generate_testobject(
BucketBin,
term_to_binary("K9.Z"),
"Value1",
[IdxSpc],
[{"MDK1", "MDV1"}]),
ok = testutil:book_riakput(Book2C, TestObj, TestSpc),
testutil:check_forobject(Book2C, TestObj),
TicTacTree3_Full = GetTicTacTreeFun(2, Book2A),
TicTacTree3_P1 = GetTicTacTreeFun(2, Book2B),
TicTacTree3_P2 = GetTicTacTreeFun(2, Book2C),
TicTacTree3_P3 = GetTicTacTreeFun(2, Book2D),
% Merge the tree across the partitions
TicTacTree3_Joined =
lists:foldl(
fun leveled_tictac:merge_trees/2,
TicTacTree3_P1,
[TicTacTree3_P2, TicTacTree3_P3]),
% Find all keys index, and then just the last key
IdxQ1 = {index_query,
BucketBin,
{fun testutil:foldkeysfun/3, []},
{<<"idx2_bin">>, <<"zz">>, <<"zz|">>},
{true, undefined}},
{async, IdxFolder1} = leveled_bookie:book_returnfolder(Book2C, IdxQ1),
true = IdxFolder1() >= 1,
DL_3to2B =
leveled_tictac:find_dirtyleaves(
TicTacTree2_P1, TicTacTree3_P1),
DL_3to2C =
leveled_tictac:find_dirtyleaves(
TicTacTree2_P2, TicTacTree3_P2),
DL_3to2D =
leveled_tictac:find_dirtyleaves(
TicTacTree2_P3, TicTacTree3_P3),
io:format("Individual tree comparison found dirty leaves of ~w ~w ~w~n",
[DL_3to2B, DL_3to2C, DL_3to2D]),
true = length(DL_3to2B) == 0,
true = length(DL_3to2C) == 1,
true = length(DL_3to2D) == 0,
% Go compare! Should find a difference in one leaf
DL3_0 = leveled_tictac:find_dirtyleaves(TicTacTree3_Full,
TicTacTree3_Joined),
io:format("Different leaves count ~w~n", [length(DL3_0)]),
true = length(DL3_0) == 1,
% Now we want to find for the {Term, Key} pairs that make up the segment
% diferrence (there should only be one)
%
% We want the database to filter on segment - so this doesn't have the
% overheads of key listing
FoldKeysIndexQFun =
fun(_Bucket, {Term, Key}, Acc) ->
Seg = get_segment(Key, SegmentCount),
case lists:member(Seg, DL3_0) of
true ->
[{Term, Key}|Acc];
false ->
Acc
end
end,
MismatchQ = {index_query,
BucketBin,
{FoldKeysIndexQFun, []},
{<<"idx2_bin">>, <<"!">>, <<"|">>},
{true, undefined}},
{async, MMFldr_2A} = leveled_bookie:book_returnfolder(Book2A, MismatchQ),
{async, MMFldr_2B} = leveled_bookie:book_returnfolder(Book2B, MismatchQ),
{async, MMFldr_2C} = leveled_bookie:book_returnfolder(Book2C, MismatchQ),
{async, MMFldr_2D} = leveled_bookie:book_returnfolder(Book2D, MismatchQ),
SWSS = os:timestamp(),
SL_Joined = MMFldr_2B() ++ MMFldr_2C() ++ MMFldr_2D(),
SL_Full = MMFldr_2A(),
io:format("Segment search across both clusters took ~w~n",
[timer:now_diff(os:timestamp(), SWSS)]),
io:format("Joined SegList ~w~n", [SL_Joined]),
io:format("Full SegList ~w~n", [SL_Full]),
Diffs = lists:subtract(SL_Full, SL_Joined)
++ lists:subtract(SL_Joined, SL_Full),
io:format("Differences between lists ~w~n", [Diffs]),
% The actual difference is discovered
true = lists:member({<<"zz999">>, term_to_binary("K9.Z")}, Diffs),
% Without discovering too many others
true = length(Diffs) < 20,
ok = leveled_bookie:book_close(Book2A),
ok = leveled_bookie:book_close(Book2B),
ok = leveled_bookie:book_close(Book2C),
ok = leveled_bookie:book_close(Book2D).
tuplebuckets_headonly(_Config) ->
ObjectCount = 60000,
RootPathHO = testutil:reset_filestructure("testTBHO"),
StartOpts1 = [{root_path, RootPathHO},
{max_pencillercachesize, 16000},
{sync_strategy, none},
{head_only, with_lookup},
{max_journalsize, 500000}],
{ok, Bookie1} = leveled_bookie:book_start(StartOpts1),
ObjectSpecFun =
fun(Op) ->
fun(N) ->
Bucket = {<<"BucketType">>, <<"B", 0:4/integer, N:4/integer>>},
Key = <<"K", N:32/integer>>,
<<Hash:32/integer, _RestBN/bitstring>> =
crypto:hash(md5, <<N:32/integer>>),
{Op, Bucket, Key, null, Hash}
end
end,
ObjectSpecL = lists:map(ObjectSpecFun(add), lists:seq(1, ObjectCount)),
SW0 = os:timestamp(),
ok = load_objectspecs(ObjectSpecL, 32, Bookie1),
io:format("Loaded an object count of ~w in ~w ms~n",
[ObjectCount, timer:now_diff(os:timestamp(), SW0)/1000]),
CheckHeadFun =
fun({add, B, K, null, H}) ->
{ok, H} =
leveled_bookie:book_headonly(Bookie1, B, K, null)
end,
lists:foreach(CheckHeadFun, ObjectSpecL),
BucketList =
lists:map(fun(I) ->
{<<"BucketType">>, <<"B", 0:4/integer, I:4/integer>>}
end,
lists:seq(0, 15)),
FoldHeadFun =
fun(B, {K, null}, V, Acc) ->
[{add, B, K, null, V}|Acc]
end,
SW1 = os:timestamp(),
{async, HeadRunner1} =
leveled_bookie:book_headfold(Bookie1,
?HEAD_TAG,
{bucket_list, BucketList},
{FoldHeadFun, []},
false, false,
false),
ReturnedObjSpecL1 = lists:reverse(HeadRunner1()),
[FirstItem|_Rest] = ReturnedObjSpecL1,
LastItem = lists:last(ReturnedObjSpecL1),
io:format("Returned ~w objects with first ~w and last ~w in ~w ms~n",
[length(ReturnedObjSpecL1),
FirstItem, LastItem,
timer:now_diff(os:timestamp(), SW1)/1000]),
true = ReturnedObjSpecL1 == lists:sort(ObjectSpecL),
{add, {TB, B1}, K1, null, _H1} = FirstItem,
{add, {TB, BL}, KL, null, _HL} = LastItem,
SegList = [testutil:get_aae_segment({TB, B1}, K1),
testutil:get_aae_segment({TB, BL}, KL)],
SW2 = os:timestamp(),
{async, HeadRunner2} =
leveled_bookie:book_headfold(Bookie1,
?HEAD_TAG,
{bucket_list, BucketList},
{FoldHeadFun, []},
false, false,
SegList),
ReturnedObjSpecL2 = lists:reverse(HeadRunner2()),
io:format("Returned ~w objects using seglist in ~w ms~n",
[length(ReturnedObjSpecL2),
timer:now_diff(os:timestamp(), SW2)/1000]),
true = length(ReturnedObjSpecL2) < (ObjectCount/1000 + 2),
% Not too many false positives
true = lists:member(FirstItem, ReturnedObjSpecL2),
true = lists:member(LastItem, ReturnedObjSpecL2),
leveled_bookie:book_destroy(Bookie1).
basic_headonly(_Config) ->
ObjectCount = 200000,
RemoveCount = 100,
basic_headonly_test(ObjectCount, RemoveCount, with_lookup),
basic_headonly_test(ObjectCount, RemoveCount, no_lookup).
basic_headonly_test(ObjectCount, RemoveCount, HeadOnly) ->
% Load some AAE type objects into Leveled using the read_only mode. This
% should allow for the items to be added in batches. Confirm that the
% journal is garbage collected as expected, and that it is possible to
% perform a fold_heads style query
RootPathHO = testutil:reset_filestructure("testHO"),
StartOpts1 = [{root_path, RootPathHO},
{max_pencillercachesize, 16000},
{sync_strategy, sync},
{head_only, HeadOnly},
{max_journalsize, 500000}],
{ok, Bookie1} = leveled_bookie:book_start(StartOpts1),
{B1, K1, V1, S1, MD} = {"Bucket",
"Key1.1.4567.4321",
"Value1",
[],
[{"MDK1", "MDV1"}]},
{TestObject, TestSpec} = testutil:generate_testobject(B1, K1, V1, S1, MD),
{unsupported_message, put} =
testutil:book_riakput(Bookie1, TestObject, TestSpec),
ObjectSpecFun =
fun(Op) ->
fun(N) ->
Bucket = <<"B", N:8/integer>>,
Key = <<"K", N:32/integer>>,
<<SegmentID:20/integer, _RestBS/bitstring>> =
crypto:hash(md5, term_to_binary({Bucket, Key})),
<<Hash:32/integer, _RestBN/bitstring>> =
crypto:hash(md5, <<N:32/integer>>),
{Op, <<SegmentID:32/integer>>, Bucket, Key, Hash}
end
end,
ObjectSpecL = lists:map(ObjectSpecFun(add), lists:seq(1, ObjectCount)),
SW0 = os:timestamp(),
ok = load_objectspecs(ObjectSpecL, 32, Bookie1),
io:format("Loaded an object count of ~w in ~w microseconds with ~w~n",
[ObjectCount, timer:now_diff(os:timestamp(), SW0), HeadOnly]),
FoldFun =
fun(_B, _K, V, {HashAcc, CountAcc}) ->
{HashAcc bxor V, CountAcc + 1}
end,
InitAcc = {0, 0},
RunnerDefinition =
{foldheads_allkeys, h, {FoldFun, InitAcc},
false, false, false, false, false},
{async, Runner1} =
leveled_bookie:book_returnfolder(Bookie1, RunnerDefinition),
SW1 = os:timestamp(),
{AccH1, AccC1} = Runner1(),
io:format("AccH and AccC of ~w ~w in ~w microseconds~n",
[AccH1, AccC1, timer:now_diff(os:timestamp(), SW1)]),
true = AccC1 == ObjectCount,
JFP = RootPathHO ++ "/journal/journal_files",
{ok, FNs} = file:list_dir(JFP),
ok = leveled_bookie:book_trimjournal(Bookie1),
WaitForTrimFun =
fun(N, _Acc) ->
{ok, PollFNs} = file:list_dir(JFP),
case length(PollFNs) < length(FNs) of
true ->
true;
false ->
timer:sleep(N * 1000),
false
end
end,
true = lists:foldl(WaitForTrimFun, false, [1, 2, 3, 5, 8, 13]),
{ok, FinalFNs} = file:list_dir(JFP),
ok = leveled_bookie:book_trimjournal(Bookie1),
% CCheck a second trim is still OK
[{add, SegmentID0, Bucket0, Key0, Hash0}|_Rest] = ObjectSpecL,
case HeadOnly of
with_lookup ->
% If we allow HEAD_TAG to be suubject to a lookup, then test this
% here
{ok, Hash0} =
leveled_bookie:book_headonly(Bookie1,
SegmentID0,
Bucket0,
Key0),
CheckHeadFun =
fun(DB) ->
fun({add, SegID, B, K, H}) ->
{ok, H} =
leveled_bookie:book_headonly(DB, SegID, B, K)
end
end,
lists:foreach(CheckHeadFun(Bookie1), ObjectSpecL),
{ok, Snapshot} =
leveled_bookie:book_start([{snapshot_bookie, Bookie1}]),
ok = leveled_bookie:book_loglevel(Snapshot, warn),
ok =
leveled_bookie:book_addlogs(
Snapshot, [b0001, b0002, b0003, i0027, p0007]
),
ok =
leveled_bookie:book_removelogs(
Snapshot, [b0019]
),
io:format(
"Checking for ~w objects against Snapshot ~w~n",
[length(ObjectSpecL), Snapshot]),
lists:foreach(CheckHeadFun(Snapshot), ObjectSpecL),
io:format("Closing snapshot ~w~n", [Snapshot]),
ok = leveled_bookie:book_close(Snapshot),
{ok, AltSnapshot} =
leveled_bookie:book_start([{snapshot_bookie, Bookie1}]),
ok =
leveled_bookie:book_addlogs(
AltSnapshot, [b0001, b0002, b0003, b0004, i0027, p0007]
),
true = is_process_alive(AltSnapshot),
io:format(
"Closing actual store ~w with snapshot ~w open~n",
[Bookie1, AltSnapshot]
),
ok = leveled_bookie:book_close(Bookie1),
% Sleep a beat so as not to race with the 'DOWN' message
timer:sleep(10),
false = is_process_alive(AltSnapshot);
no_lookup ->
{unsupported_message, head} =
leveled_bookie:book_head(Bookie1,
SegmentID0,
{Bucket0, Key0},
h),
{unsupported_message, head} =
leveled_bookie:book_headonly(Bookie1,
SegmentID0,
Bucket0,
Key0),
io:format("Closing actual store ~w~n", [Bookie1]),
ok = leveled_bookie:book_close(Bookie1)
end,
{ok, FinalJournals} = file:list_dir(JFP),
io:format("Trim has reduced journal count from " ++
"~w to ~w and ~w after restart~n",
[length(FNs), length(FinalFNs), length(FinalJournals)]),
{ok, Bookie2} = leveled_bookie:book_start(StartOpts1),
{async, Runner2} =
leveled_bookie:book_returnfolder(Bookie2, RunnerDefinition),
{AccH2, AccC2} = Runner2(),
true = AccC2 == ObjectCount,
case HeadOnly of
with_lookup ->
% If we allow HEAD_TAG to be suubject to a lookup, then test this
% here
{ok, Hash0} =
leveled_bookie:book_head(Bookie2,
SegmentID0,
{Bucket0, Key0},
h);
no_lookup ->
{unsupported_message, head} =
leveled_bookie:book_head(Bookie2,
SegmentID0,
{Bucket0, Key0},
h)
end,
RemoveSpecL0 = lists:sublist(ObjectSpecL, RemoveCount),
RemoveSpecL1 =
lists:map(fun(Spec) -> setelement(1, Spec, remove) end, RemoveSpecL0),
ok = load_objectspecs(RemoveSpecL1, 32, Bookie2),
{async, Runner3} =
leveled_bookie:book_returnfolder(Bookie2, RunnerDefinition),
{AccH3, AccC3} = Runner3(),
true = AccC3 == (ObjectCount - RemoveCount),
false = AccH3 == AccH2,
ok = leveled_bookie:book_close(Bookie2).
load_objectspecs([], _SliceSize, _Bookie) ->
ok;
load_objectspecs(ObjectSpecL, SliceSize, Bookie)
when length(ObjectSpecL) < SliceSize ->
load_objectspecs(ObjectSpecL, length(ObjectSpecL), Bookie);
load_objectspecs(ObjectSpecL, SliceSize, Bookie) ->
{Head, Tail} = lists:split(SliceSize, ObjectSpecL),
case leveled_bookie:book_mput(Bookie, Head) of
ok ->
load_objectspecs(Tail, SliceSize, Bookie);
pause ->
timer:sleep(10),
load_objectspecs(Tail, SliceSize, Bookie)
end.
get_segment(K, SegmentCount) ->
BinKey =
case is_binary(K) of
true ->
K;
false ->
term_to_binary(K)
end,
{SegmentID, ExtraHash} = leveled_codec:segment_hash(BinKey),
SegHash = (ExtraHash band 65535) bsl 16 + SegmentID,
leveled_tictac:get_segment(SegHash, SegmentCount).