leveled/src/leveled_bookie.erl
2021-10-01 01:51:59 +01:00

3328 lines
143 KiB
Erlang

%% -------- Overview ---------
%%
%% Leveled is based on the LSM-tree similar to leveldb, except that:
%% - Keys, Metadata and Values are not persisted together - the Keys and
%% Metadata are kept in a tree-based ledger, whereas the values are stored
%% only in a sequential Journal.
%% - Different file formats are used for Journal (based on DJ Bernstein
%% constant database), and the ledger (based on sst)
%% - It is not intended to be general purpose, but be primarily suited for
%% use as a Riak backend in specific circumstances (relatively large values,
%% and frequent use of iterators)
%% - The Journal is an extended nursery log in leveldb terms. It is keyed
%% on the sequence number of the write
%% - The ledger is a merge tree, where the key is the actual object key, and
%% the value is the metadata of the object including the sequence number
%%
%%
%% -------- Actors ---------
%%
%% The store is fronted by a Bookie, who takes support from different actors:
%% - An Inker who persists new data into the journal, and returns items from
%% the journal based on sequence number
%% - A Penciller who periodically redraws the ledger, that associates keys with
%% sequence numbers and other metadata, as well as secondary keys (for index
%% queries)
%% - One or more Clerks, who may be used by either the inker or the penciller
%% to fulfill background tasks
%%
%% Both the Inker and the Penciller maintain a manifest of the files which
%% represent the current state of the Journal and the Ledger repsectively.
%% For the Inker the manifest maps ranges of sequence numbers to cdb files.
%% For the Penciller the manifest maps key ranges to files at each level of
%% the Ledger.
%%
-module(leveled_bookie).
-behaviour(gen_server).
-include("include/leveled.hrl").
-export([init/1,
handle_call/3,
handle_cast/2,
handle_info/2,
terminate/2,
code_change/3,
book_start/1,
book_start/4,
book_plainstart/1,
book_put/5,
book_put/6,
book_put/8,
book_tempput/7,
book_mput/2,
book_mput/3,
book_delete/4,
book_get/3,
book_get/4,
book_head/3,
book_head/4,
book_sqn/3,
book_sqn/4,
book_headonly/4,
book_snapshot/4,
book_compactjournal/2,
book_islastcompactionpending/1,
book_trimjournal/1,
book_hotbackup/1,
book_close/1,
book_destroy/1,
book_isempty/2,
book_logsettings/1,
book_loglevel/2,
book_addlogs/2,
book_removelogs/2]).
%% folding API
-export([
book_returnfolder/2,
book_indexfold/5,
book_bucketlist/4,
book_keylist/3,
book_keylist/4,
book_keylist/5,
book_keylist/6,
book_objectfold/4,
book_objectfold/5,
book_objectfold/6,
book_headfold/6,
book_headfold/7,
book_headfold/9
]).
-export([empty_ledgercache/0,
snapshot_store/6,
fetch_value/2,
journal_notfound/4]).
-ifdef(TEST).
-export([book_returnactors/1]).
-endif.
-include_lib("eunit/include/eunit.hrl").
-define(LOADING_PAUSE, 1000).
-define(CACHE_SIZE, 2500).
-define(MIN_CACHE_SIZE, 100).
-define(MIN_PCL_CACHE_SIZE, 400).
-define(MAX_PCL_CACHE_SIZE, 28000).
% This is less than actual max - but COIN_SIDECOUNT
-define(CACHE_SIZE_JITTER, 25).
-define(JOURNAL_SIZE_JITTER, 20).
-define(ABSOLUTEMAX_JOURNALSIZE, 4000000000).
-define(LONG_RUNNING, 1000000).
% An individual task taking > 1s gets a specific log
-define(COMPRESSION_METHOD, lz4).
-define(COMPRESSION_POINT, on_receipt).
-define(LOG_LEVEL, info).
-define(TIMING_SAMPLESIZE, 100).
-define(DEFAULT_DBID, 65536).
-define(TIMING_SAMPLECOUNTDOWN, 50000).
-define(DUMMY, dummy). % Dummy key used for mput operations
-define(MAX_KEYCHECK_FREQUENCY, 100).
-define(MIN_KEYCHECK_FREQUENCY, 1).
-define(OPEN_LASTMOD_RANGE, {0, infinity}).
-define(SNAPTIMEOUT_SHORT, 900). % 15 minutes
-define(SNAPTIMEOUT_LONG, 43200). % 12 hours
-define(SST_PAGECACHELEVEL_NOLOOKUP, 1).
-define(SST_PAGECACHELEVEL_LOOKUP, 4).
-define(CACHE_LOGPOINT, 50000).
-define(OPTION_DEFAULTS,
[{root_path, undefined},
{snapshot_bookie, undefined},
{cache_size, ?CACHE_SIZE},
{max_journalsize, 1000000000},
{max_journalobjectcount, 200000},
{max_sstslots, 256},
{sync_strategy, none},
{head_only, false},
{waste_retention_period, undefined},
{max_run_length, undefined},
{singlefile_compactionpercentage, 30.0},
{maxrunlength_compactionpercentage, 70.0},
{journalcompaction_scoreonein, 1},
{reload_strategy, []},
{max_pencillercachesize, ?MAX_PCL_CACHE_SIZE},
{ledger_preloadpagecache_level, ?SST_PAGECACHELEVEL_LOOKUP},
{compression_method, ?COMPRESSION_METHOD},
{compression_point, ?COMPRESSION_POINT},
{log_level, ?LOG_LEVEL},
{forced_logs, []},
{database_id, ?DEFAULT_DBID},
{override_functions, []},
{snapshot_timeout_short, ?SNAPTIMEOUT_SHORT},
{snapshot_timeout_long, ?SNAPTIMEOUT_LONG}]).
-record(ledger_cache, {mem :: ets:tab(),
loader = leveled_tree:empty(?CACHE_TYPE)
:: tuple()|empty_cache,
load_queue = [] :: list(),
index = leveled_pmem:new_index(), % array or empty_index
min_sqn = infinity :: integer()|infinity,
max_sqn = 0 :: integer()}).
-record(state, {inker :: pid() | undefined,
penciller :: pid() | undefined,
cache_size :: integer() | undefined,
ledger_cache = #ledger_cache{} :: ledger_cache(),
is_snapshot :: boolean() | undefined,
slow_offer = false :: boolean(),
head_only = false :: boolean(),
head_lookup = true :: boolean(),
ink_checking = ?MAX_KEYCHECK_FREQUENCY :: integer(),
put_countdown = 0 :: integer(),
get_countdown = 0 :: integer(),
fold_countdown = 0 :: integer(),
head_countdown = 0 :: integer(),
cache_ratio = {0, 0, 0} :: cache_ratio(),
get_timings = no_timing :: get_timings(),
put_timings = no_timing :: put_timings(),
fold_timings = no_timing :: fold_timings(),
head_timings = no_timing :: head_timings()}).
-record(get_timings, {sample_count = 0 :: integer(),
head_time = 0 :: integer(),
body_time = 0 :: integer(),
fetch_count = 0 :: integer()}).
-record(head_timings, {sample_count = 0 :: integer(),
pcl_time = 0 :: integer(),
buildhead_time = 0 :: integer()}).
-record(put_timings, {sample_count = 0 :: integer(),
mem_time = 0 :: integer(),
ink_time = 0 :: integer(),
total_size = 0 :: integer()}).
-record(fold_timings, {sample_count = 0 :: integer(),
setup_time = 0 :: integer()}).
-type book_state() :: #state{}.
-type sync_mode() :: sync|none|riak_sync.
-type ledger_cache() :: #ledger_cache{}.
-type get_timings() :: no_timing|#get_timings{}.
-type put_timings() :: no_timing|#put_timings{}.
-type fold_timings() :: no_timing|#fold_timings{}.
-type head_timings() :: no_timing|#head_timings{}.
-type timing_types() :: head|get|put|fold.
-type cache_ratio() ::
{non_neg_integer(), non_neg_integer(), non_neg_integer()}.
-type open_options() ::
%% For full description of options see ../docs/STARTUP_OPTIONS.md
[{root_path, string()|undefined} |
% Folder to be used as the root path for storing all the database
% information. Should be undefined is snapshot_bookie is a pid()
% TODO: Some sort of split root path to allow for mixed classes of
% storage (e.g. like eleveldb tiered storage - only with
% separation between ledger and non-current journal)
{snapshot_bookie, undefined|pid()} |
% Is the bookie being started required to a be a snapshot of an
% existing bookie, rather than a new bookie. The bookie to be
% snapped should have its pid passed as the startup option in this
% case
{cache_size, pos_integer()} |
% The size of the Bookie's memory, the cache of the recent
% additions to the ledger. Defaults to ?CACHE_SIZE, plus some
% randomised jitter (randomised jitter will still be added to
% configured values)
% The minimum value is 100 - any lower value will be ignored
{max_journalsize, pos_integer()} |
% The maximum size of a journal file in bytes. The absolute
% maximum must be 4GB due to 4 byte file pointers being used
{max_journalobjectcount, pos_integer()} |
% The maximum size of the journal by count of the objects. The
% journal must remain within the limit set by both this figures and
% the max_journalsize
{max_sstslots, pos_integer()} |
% The maximum number of slots in a SST file. All testing is done
% at a size of 256 (except for Quickcheck tests}, altering this
% value is not recommended
{sync_strategy, sync_mode()} |
% Should be sync if it is necessary to flush to disk after every
% write, or none if not (allow the OS to schecdule). This has a
% significant impact on performance which can be mitigated
% partially in hardware (e.g through use of FBWC).
% riak_sync is used for backwards compatability with OTP16 - and
% will manually call sync() after each write (rather than use the
% O_SYNC option on startup)
{head_only, false|with_lookup|no_lookup} |
% When set to true, there are three fundamental changes as to how
% leveled will work:
% - Compaction of the journalwill be managed by simply removing any
% journal file thathas a highest sequence number persisted to the
% ledger;
% - GETs are not supported, only head requests;
% - PUTs should arrive batched object specs using the book_mput/2
% function.
% head_only mode is disabled with false (default). There are two
% different modes in which head_only can run with_lookup or
% no_lookup and heaD_only mode is enabled by passing one of these
% atoms:
% - with_lookup assumes that individual objects may need to be
% fetched;
% - no_lookup prevents individual objects from being fetched, so
% that the store can only be used for folds (without segment list
% acceleration)
{waste_retention_period, undefined|pos_integer()} |
% If a value is not required in the journal (i.e. it has been
% replaced and is now to be removed for compaction) for how long
% should it be retained. For example should it be kept for a
% period until the operator cna be sure a backup has been
% completed?
% If undefined, will not retian waste, otherwise the period is the
% number of seconds to wait
{max_run_length, undefined|pos_integer()} |
% The maximum number of consecutive files that can be compacted in
% one compaction operation.
% Defaults to leveled_iclerk:?MAX_COMPACTION_RUN (if undefined)
{singlefile_compactionpercentage, float()} |
% What is the percentage of space to be recovered from compacting
% a single file, before that file can be a compaction candidate in
% a compaction run of length 1
{maxrunlength_compactionpercentage, float()} |
% What is the percentage of space to be recovered from compacting
% a run of max_run_length, before that run can be a compaction
% candidate. For runs between 1 and max_run_length, a
% proportionate score is calculated
{journalcompaction_scoreonein, pos_integer()} |
% When scoring for compaction run a probability (1 in x) of whether
% any file will be scored this run. If not scored a cached score
% will be used, and the cached score is the average of the latest
% score and the rolling average of previous scores
{reload_strategy, list()} |
% The reload_strategy is exposed as an option as currently no firm
% decision has been made about how recovery from failure should
% work. For instance if we were to trust everything as permanent
% in the Ledger once it is persisted, then there would be no need
% to retain a skinny history of key changes in the Journal after
% compaction. If, as an alternative we assume the Ledger is never
% permanent, and retain the skinny hisory - then backups need only
% be made against the Journal. The skinny history of key changes
% is primarily related to the issue of supporting secondary indexes
% in Riak.
%
% These two strategies are referred to as recovr (assume we can
% recover any deltas from a lost ledger and a lost history through
% resilience outside of the store), or retain (retain a history of
% key changes, even when the object value has been compacted).
%
% There is a third strategy, which is recalc, where on reloading
% the Ledger from the Journal, the key changes are recalculated by
% comparing the extracted metadata from the Journal object, with the
% extracted metadata from the current Ledger object it is set to
% replace (should one be present). Implementing the recalc
% strategy requires a override function for
% `leveled_head:diff_indexspecs/3`.
% A function for the ?RIAK_TAG is provided and tested.
%
% reload_strategy options are a list - to map from a tag to the
% strategy (recovr|retain|recalc). Defualt strategies are:
% [{?RIAK_TAG, retain}, {?STD_TAG, retain}]
{max_pencillercachesize, pos_integer()|undefined} |
% How many ledger keys should the penciller retain in memory
% between flushing new level zero files.
% Defaults to ?MAX_PCL_CACHE_SIZE when undefined
% The minimum size 400 - attempt to set this vlaue lower will be
% ignored. As a rule the value should be at least 4 x the Bookie's
% cache size
{ledger_preloadpagecache_level, pos_integer()} |
% To which level of the ledger should the ledger contents be
% pre-loaded into the pagecache (using fadvise on creation and
% startup)
{compression_method, native|lz4} |
% Compression method and point allow Leveled to be switched from
% using bif based compression (zlib) to using nif based compression
% (lz4).
% Defaults to ?COMPRESSION_METHOD
{compression_point, on_compact|on_receipt} |
% The =compression point can be changed between on_receipt (all
% values are compressed as they are received), to on_compact where
% values are originally stored uncompressed (speeding PUT times),
% and are only compressed when they are first subject to compaction
% Defaults to ?COMPRESSION_POINT
{log_level, debug|info|warn|error|critical} |
% Set the log level. The default log_level of info is noisy - the
% current implementation was targetted at environments that have
% facilities to index large proportions of logs and allow for
% dynamic querying of those indexes to output relevant stats.
%
% As an alternative a higher log_level can be used to reduce this
% 'noise', however, there is currently no separate stats facility
% to gather relevant information outside of info level logs. So
% moving to higher log levels will at present make the operator
% blind to sample performance statistics of leveled sub-components
% etc
{forced_logs, list(string())} |
% Forced logs allow for specific info level logs, such as those
% logging stats to be logged even when the default log level has
% been set to a higher log level. Using:
% {forced_logs,
% ["B0015", "B0016", "B0017", "B0018",
% "P0032", "SST12", "CDB19", "SST13", "I0019"]}
% Will log all timing points even when log_level is not set to
% support info
{database_id, non_neg_integer()} |
% Integer database ID to be used in logs
{override_functions, list(leveled_head:appdefinable_function_tuple())} |
% Provide a list of override functions that will be used for
% user-defined tags
{snapshot_timeout_short, pos_integer()} |
% Time in seconds before a snapshot that has not been shutdown is
% assumed to have failed, and so requires to be torndown. The
% short timeout is applied to queries where long_running is set to
% false
{snapshot_timeout_long, pos_integer()}
% Time in seconds before a snapshot that has not been shutdown is
% assumed to have failed, and so requires to be torndown. The
% short timeout is applied to queries where long_running is set to
% true
].
-type initial_loadfun() ::
fun((leveled_codec:journal_key(),
any(),
non_neg_integer(),
{non_neg_integer(), non_neg_integer(), ledger_cache()},
fun((any()) -> {binary(), non_neg_integer()})) ->
{loop|stop,
{non_neg_integer(), non_neg_integer(), ledger_cache()}}).
-export_type([initial_loadfun/0]).
%%%============================================================================
%%% API
%%%============================================================================
-spec book_start(string(), integer(), integer(), sync_mode()) -> {ok, pid()}.
%% @doc Start a Leveled Key/Value store - limited options support.
%%
%% The most common startup parameters are extracted out from the options to
%% provide this startup method. This will start a KV store from the previous
%% store at root path - or an empty one if there is no store at the path.
%%
%% Fiddling with the LedgerCacheSize and JournalSize may improve performance,
%% but these are primarily exposed to support special situations (e.g. very
%% low memory installations), there should not be huge variance in outcomes
%% from modifying these numbers.
%%
%% The sync_strategy determines if the store is going to flush writes to disk
%% before returning an ack. There are three settings currrently supported:
%% - sync - sync to disk by passing the sync flag to the file writer (only
%% works in OTP 18)
%% - riak_sync - sync to disk by explicitly calling data_sync after the write
%% - none - leave it to the operating system to control flushing
%%
%% On startup the Bookie must restart both the Inker to load the Journal, and
%% the Penciller to load the Ledger. Once the Penciller has started, the
%% Bookie should request the highest sequence number in the Ledger, and then
%% and try and rebuild any missing information from the Journal.
%%
%% To rebuild the Ledger it requests the Inker to scan over the files from
%% the sequence number and re-generate the Ledger changes - pushing the changes
%% directly back into the Ledger.
book_start(RootPath, LedgerCacheSize, JournalSize, SyncStrategy) ->
book_start(set_defaults([{root_path, RootPath},
{cache_size, LedgerCacheSize},
{max_journalsize, JournalSize},
{sync_strategy, SyncStrategy}])).
-spec book_start(list(tuple())) -> {ok, pid()}.
%% @doc Start a Leveled Key/Value store - full options support.
%%
%% For full description of options see ../docs/STARTUP_OPTIONS.md and also
%% comments on the open_options() type
book_start(Opts) ->
gen_server:start_link(?MODULE, [set_defaults(Opts)], []).
-spec book_plainstart(list(tuple())) -> {ok, pid()}.
%% @doc
%% Start used in tests to start without linking
book_plainstart(Opts) ->
gen_server:start(?MODULE, [set_defaults(Opts)], []).
-spec book_tempput(pid(), leveled_codec:key(), leveled_codec:key(), any(),
leveled_codec:index_specs(),
leveled_codec:tag(), integer()) -> ok|pause.
%% @doc Put an object with an expiry time
%%
%% Put an item in the store but with a Time To Live - the time when the object
%% should expire, in gregorian_seconds (add the required number of seconds to
%% leveled_util:integer_time/1).
%%
%% There exists the possibility of per object expiry times, not just whole
%% store expiry times as has traditionally been the feature in Riak. Care
%% will need to be taken if implementing per-object times about the choice of
%% reload_strategy. If expired objects are to be compacted entirely, then the
%% history of KeyChanges will be lost on reload.
book_tempput(Pid, Bucket, Key, Object, IndexSpecs, Tag, TTL)
when is_integer(TTL) ->
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag, TTL).
%% @doc - Standard PUT
%%
%% A PUT request consists of
%% - A Primary Key and a Value
%% - IndexSpecs - a set of secondary key changes associated with the
%% transaction
%% - A tag indicating the type of object. Behaviour for metadata extraction,
%% and ledger compaction will vary by type. There are three currently
%% implemented types i (Index), o (Standard), o_rkv (Riak). Keys added with
%% Index tags are not fetchable (as they will not be hashed), but are
%% extractable via range query.
%%
%% The extended-arity book_put functions support the addition of an object
%% TTL and a `sync` boolean to flush this PUT (and any other buffered PUTs to
%% disk when the sync_stategy is `none`.
%%
%% The Bookie takes the request and passes it first to the Inker to add the
%% request to the journal.
%%
%% The inker will pass the PK/Value/IndexSpecs to the current (append only)
%% CDB journal file to persist the change. The call should return either 'ok'
%% or 'roll'. 'roll' indicates that the CDB file has insufficient capacity for
%% this write, and a new journal file should be created (with appropriate
%% manifest changes to be made).
%%
%% The inker will return the SQN which the change has been made at, as well as
%% the object size on disk within the Journal.
%%
%% Once the object has been persisted to the Journal, the Ledger can be updated.
%% The Ledger is updated by the Bookie applying a function (extract_metadata/4)
%% to the Value to return the Object Metadata, a function to generate a hash
%% of the Value and also taking the Primary Key, the IndexSpecs, the Sequence
%% Number in the Journal and the Object Size (returned from the Inker).
%%
%% A set of Ledger Key changes are then generated and placed in the Bookie's
%% Ledger Key cache.
%%
%% The PUT can now be acknowledged. In the background the Bookie may then
%% choose to push the cache to the Penciller for eventual persistence within
%% the ledger. This push will either be acccepted or returned (if the
%% Penciller has a backlog of key changes). The back-pressure should lead to
%% the Bookie entering into a slow-offer status whereby the next PUT will be
%% acknowledged by a PAUSE signal - with the expectation that the this will
%% lead to a back-off behaviour.
book_put(Pid, Bucket, Key, Object, IndexSpecs) ->
book_put(Pid, Bucket, Key, Object, IndexSpecs, ?STD_TAG).
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag) ->
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag, infinity).
-spec book_put(pid(), leveled_codec:key(), leveled_codec:key(), any(),
leveled_codec:index_specs(),
leveled_codec:tag(), infinity|integer()) -> ok|pause.
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag, TTL) when is_atom(Tag) ->
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag, TTL, false).
-spec book_put(pid(), leveled_codec:key(), leveled_codec:key(), any(),
leveled_codec:index_specs(),
leveled_codec:tag(), infinity|integer(),
boolean()) -> ok|pause.
book_put(Pid, Bucket, Key, Object, IndexSpecs, Tag, TTL, DataSync) ->
gen_server:call(Pid,
{put, Bucket, Key, Object, IndexSpecs, Tag, TTL, DataSync},
infinity).
-spec book_mput(pid(), list(leveled_codec:object_spec())) -> ok|pause.
%% @doc
%%
%% When the store is being run in head_only mode, batches of object specs may
%% be inserted in to the store using book_mput/2. ObjectSpecs should be
%% of the form {ObjectOp, Bucket, Key, SubKey, Value}. The Value will be
%% stored within the HEAD of the object (in the Ledger), so the full object
%% is retrievable using a HEAD request. The ObjectOp is either add or remove.
%%
%% The list should be de-duplicated before it is passed to the bookie.
book_mput(Pid, ObjectSpecs) ->
book_mput(Pid, ObjectSpecs, infinity).
-spec book_mput(pid(), list(leveled_codec:object_spec()), infinity|integer())
-> ok|pause.
%% @doc
%%
%% When the store is being run in head_only mode, batches of object specs may
%% be inserted in to the store using book_mput/2. ObjectSpecs should be
%% of the form {action, Bucket, Key, SubKey, Value}. The Value will be
%% stored within the HEAD of the object (in the Ledger), so the full object
%% is retrievable using a HEAD request.
%%
%% The list should be de-duplicated before it is passed to the bookie.
book_mput(Pid, ObjectSpecs, TTL) ->
gen_server:call(Pid, {mput, ObjectSpecs, TTL}, infinity).
-spec book_delete(pid(),
leveled_codec:key(), leveled_codec:key(),
leveled_codec:index_specs()) -> ok|pause.
%% @doc
%%
%% A thin wrap around the put of a special tombstone object. There is no
%% immediate reclaim of space, simply the addition of a more recent tombstone.
book_delete(Pid, Bucket, Key, IndexSpecs) ->
book_put(Pid, Bucket, Key, delete, IndexSpecs, ?STD_TAG).
-spec book_get(pid(),
leveled_codec:key(), leveled_codec:key(), leveled_codec:tag())
-> {ok, any()}|not_found.
-spec book_head(pid(),
leveled_codec:key(), leveled_codec:key(), leveled_codec:tag())
-> {ok, any()}|not_found.
-spec book_sqn(pid(),
leveled_codec:key(), leveled_codec:key(), leveled_codec:tag())
-> {ok, non_neg_integer()}|not_found.
-spec book_headonly(pid(),
leveled_codec:key(), leveled_codec:key(), leveled_codec:key())
-> {ok, any()}|not_found.
%% @doc - GET and HEAD requests
%%
%% The Bookie supports both GET and HEAD requests, with the HEAD request
%% returning only the metadata and not the actual object value. The HEAD
%% requets cna be serviced by reference to the Ledger Cache and the Penciller.
%%
%% GET requests first follow the path of a HEAD request, and if an object is
%% found, then fetch the value from the Journal via the Inker.
%%
%% to perform a head request in head_only mode with_lookup, book_headonly/4
%% should be used. Not if head_only mode is false or no_lookup, then this
%% request would not be supported
book_get(Pid, Bucket, Key, Tag) ->
gen_server:call(Pid, {get, Bucket, Key, Tag}, infinity).
book_head(Pid, Bucket, Key, Tag) ->
gen_server:call(Pid, {head, Bucket, Key, Tag, false}, infinity).
book_get(Pid, Bucket, Key) ->
book_get(Pid, Bucket, Key, ?STD_TAG).
book_head(Pid, Bucket, Key) ->
book_head(Pid, Bucket, Key, ?STD_TAG).
book_headonly(Pid, Bucket, Key, SubKey) ->
gen_server:call(Pid,
{head, Bucket, {Key, SubKey}, ?HEAD_TAG, false},
infinity).
book_sqn(Pid, Bucket, Key) ->
book_sqn(Pid, Bucket, Key, ?STD_TAG).
book_sqn(Pid, Bucket, Key, Tag) ->
gen_server:call(Pid, {head, Bucket, Key, Tag, true}, infinity).
-spec book_returnfolder(pid(), tuple()) -> {async, fun()}.
%% @doc Folds over store - deprecated
%% The tuple() is a query, and book_returnfolder will return an {async, Folder}
%% whereby calling Folder() will run a particular fold over a snapshot of the
%% store, and close the snapshot when complete
%%
%% For any new application requiring a fold - use the API below instead, and
%% one of:
%% - book_indexfold
%% - book_bucketlist
%% - book_keylist
%% - book_headfold
%% - book_objectfold
book_returnfolder(Pid, RunnerType) ->
gen_server:call(Pid, {return_runner, RunnerType}, infinity).
%% Different runner types for async queries:
%% - book_indexfold
%% - book_bucketlist
%% - book_keylist
%% - book_headfold
%% - book_objectfold
%%
%% See individual instructions for each one. All folds can be completed early
%% by using a fold_function that throws an exception when some threshold is
%% reached - and a worker that catches that exception.
%%
%% See test/end_to_end/iterator_SUITE:breaking_folds/1
%% @doc Builds and returns an `{async, Runner}' pair for secondary
%% index queries. Calling `Runner' will fold over keys (ledger) tagged
%% with the index `?IDX_TAG' and Constrain the fold to a specific
%% `Bucket''s index fields, as specified by the `Constraint'
%% argument. If `Constraint' is a tuple of `{Bucket, Key}' the fold
%% starts at `Key', meaning any keys lower than `Key' and which match
%% the start of the range query, will not be folded over (this is
%% useful for implementing pagination, for example.)
%%
%% Provide a `FoldAccT' tuple of fold fun ( which is 3 arity fun that
%% will be called once per-matching index entry, with the Bucket,
%% Primary Key (or {IndexVal and Primary key} if `ReturnTerms' is
%% true)) and an initial Accumulator, which will be passed as the 3rd
%% argument in the initial call to FoldFun. Subsequent calls to
%% FoldFun will use the previous return of FoldFun as the 3rd
%% argument, and the final return of `Runner' is the final return of
%% `FoldFun', the final Accumulator value. The query can filter inputs
%% based on `Range' and `TermHandling'. `Range' specifies the name of
%% `IndexField' to query, and `Start' and `End' optionally provide the
%% range to query over. `TermHandling' is a 2-tuple, the first
%% element is a `boolean()', `true' meaning return terms, (see fold
%% fun above), `false' meaning just return primary keys. `TermRegex'
%% is either a regular expression of type `re:mp()' (that will be run
%% against each index term value, and only those that match will be
%% accumulated) or `undefined', which means no regular expression
%% filtering of index values. NOTE: Regular Expressions can ONLY be
%% run on indexes that have binary or string values, NOT integer
%% values. In the Riak sense of secondary indexes, there are two types
%% of indexes `_bin' indexes and `_int' indexes. Term regex may only
%% be run against the `_bin' type.
%%
%% Any book_indexfold query will fold over the snapshot under the control
%% of the worker process controlling the function - and that process can
%% be interrupted by a throw, which will be forwarded to the worker (whilst
%% still closing down the snapshot). This may be used, for example, to
%% curtail a fold in the application at max_results
-spec book_indexfold(pid(),
Constraint:: {Bucket, StartKey},
FoldAccT :: {FoldFun, Acc},
Range :: {IndexField, Start, End},
TermHandling :: {ReturnTerms, TermRegex}) ->
{async, Runner::fun()}
when Bucket::term(),
StartKey::term(),
FoldFun::fun((Bucket, Key | {IndexVal, Key}, Acc) -> Acc),
Acc::term(),
IndexField::term(),
IndexVal::term(),
Start::IndexVal,
End::IndexVal,
ReturnTerms::boolean(),
TermRegex :: leveled_codec:regular_expression().
book_indexfold(Pid, Constraint, FoldAccT, Range, TermHandling)
when is_tuple(Constraint) ->
RunnerType =
{index_query, Constraint, FoldAccT, Range, TermHandling},
book_returnfolder(Pid, RunnerType);
book_indexfold(Pid, Bucket, FoldAccT, Range, TermHandling) ->
% StartKey must be specified to avoid confusion when bucket is a tuple.
% Use an empty StartKey if no StartKey is required (e.g. <<>>). In a
% future release this code branch may be removed, and such queries may
% instead return `error`. For now null is assumed to be lower than any
% key
leveled_log:log("B0019", [Bucket]),
book_indexfold(Pid, {Bucket, null}, FoldAccT, Range, TermHandling).
%% @doc list buckets. Folds over the ledger only. Given a `Tag' folds
%% over the keyspace calling `FoldFun' from `FoldAccT' for each
%% `Bucket'. `FoldFun' is a 2-arity function that is passed `Bucket'
%% and `Acc'. On first call `Acc' is the initial `Acc' from
%% `FoldAccT', thereafter the result of the previous call to
%% `FoldFun'. `Constraint' can be either atom `all' or `first' meaning
%% return all buckets, or just the first one found. Returns `{async,
%% Runner}' where `Runner' is a fun that returns the final value of
%% `FoldFun', the final `Acc' accumulator.
-spec book_bucketlist(pid(), Tag, FoldAccT, Constraint) ->
{async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Acc) -> Acc),
Acc :: term(),
Constraint :: first | all,
Bucket :: term(),
Acc :: term(),
Runner :: fun(() -> Acc).
book_bucketlist(Pid, Tag, FoldAccT, Constraint) ->
RunnerType=
case Constraint of
first-> {first_bucket, Tag, FoldAccT};
all -> {bucket_list, Tag, FoldAccT}
end,
book_returnfolder(Pid, RunnerType).
%% @doc fold over the keys (ledger only) for a given `Tag'. Each key
%% will result in a call to `FoldFun' from `FoldAccT'. `FoldFun' is a
%% 3-arity function, called with `Bucket', `Key' and `Acc'. The
%% initial value of `Acc' is the second element of `FoldAccT'. Returns
%% `{async, Runner}' where `Runner' is a function that will run the
%% fold and return the final value of `Acc'
%%
%% Any book_keylist query will fold over the snapshot under the control
%% of the worker process controlling the function - and that process can
%% be interrupted by a throw, which will be forwarded to the worker (whilst
%% still closing down the snapshot). This may be used, for example, to
%% curtail a fold in the application at max_results
-spec book_keylist(pid(), Tag, FoldAccT) -> {async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
Key :: term(),
Runner :: fun(() -> Acc).
book_keylist(Pid, Tag, FoldAccT) ->
RunnerType = {keylist, Tag, FoldAccT},
book_returnfolder(Pid, RunnerType).
%% @doc as for book_keylist/3 but constrained to only those keys in
%% `Bucket'
-spec book_keylist(pid(), Tag, Bucket, FoldAccT) -> {async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
Key :: term(),
Runner :: fun(() -> Acc).
book_keylist(Pid, Tag, Bucket, FoldAccT) ->
RunnerType = {keylist, Tag, Bucket, FoldAccT},
book_returnfolder(Pid, RunnerType).
%% @doc as for book_keylist/4 with additional constraint that only
%% keys in the `KeyRange' tuple will be folder over, where `KeyRange'
%% is `StartKey', the first key in the range and `EndKey' the last,
%% (inclusive.) Or the atom `all', which will return all keys in the
%% `Bucket'.
-spec book_keylist(pid(), Tag, Bucket, KeyRange, FoldAccT) ->
{async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
KeyRange :: {StartKey, EndKey} | all,
StartKey :: Key,
EndKey :: Key,
Key :: term(),
Runner :: fun(() -> Acc).
book_keylist(Pid, Tag, Bucket, KeyRange, FoldAccT) ->
RunnerType = {keylist, Tag, Bucket, KeyRange, FoldAccT, undefined},
book_returnfolder(Pid, RunnerType).
%% @doc as for book_keylist/5 with additional constraint that a compile regular
%% expression is passed to be applied against any key that is in the range.
%% This is always applied to the Key and only the Key, not to any SubKey.
-spec book_keylist(pid(), Tag, Bucket, KeyRange, FoldAccT, TermRegex) ->
{async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
KeyRange :: {StartKey, EndKey} | all,
StartKey :: Key,
EndKey :: Key,
Key :: term(),
TermRegex :: leveled_codec:regular_expression(),
Runner :: fun(() -> Acc).
book_keylist(Pid, Tag, Bucket, KeyRange, FoldAccT, TermRegex) ->
RunnerType = {keylist, Tag, Bucket, KeyRange, FoldAccT, TermRegex},
book_returnfolder(Pid, RunnerType).
%% @doc fold over all the objects/values in the store in key
%% order. `Tag' is the tagged type of object. `FoldAccT' is a 2-tuple,
%% the first element being a 4-arity fun, that is called once for each
%% key with the arguments `Bucket', `Key', `Value', `Acc'. The 2nd
%% element is the initial accumulator `Acc' which is passed to
%% `FoldFun' on it's first call. Thereafter the return value from
%% `FoldFun' is the 4th argument to the next call of
%% `FoldFun'. `SnapPreFold' is a boolean where `true' means take the
%% snapshot at once, and `false' means take the snapshot when the
%% returned `Runner' is executed. Return `{async, Runner}' where
%% `Runner' is a 0-arity function that returns the final accumulator
%% from `FoldFun'
-spec book_objectfold(pid(), Tag, FoldAccT, SnapPreFold) -> {async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Value, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
Key :: term(),
Value :: term(),
SnapPreFold :: boolean(),
Runner :: fun(() -> Acc).
book_objectfold(Pid, Tag, FoldAccT, SnapPreFold) ->
RunnerType = {foldobjects_allkeys, Tag, FoldAccT, SnapPreFold},
book_returnfolder(Pid, RunnerType).
%% @doc exactly as book_objectfold/4 with the additional parameter
%% `Order'. `Order' can be `sqn_order' or `key_order'. In
%% book_objectfold/4 and book_objectfold/6 `key_order' is
%% implied. This function called with `Option == key_order' is
%% identical to book_objectfold/4. NOTE: if you most fold over ALL
%% objects, this is quicker than `key_order' due to accessing the
%% journal objects in thei ron disk order, not via a fold over the
%% ledger.
-spec book_objectfold(pid(), Tag, FoldAccT, SnapPreFold, Order) -> {async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Value, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
Key :: term(),
Value :: term(),
SnapPreFold :: boolean(),
Runner :: fun(() -> Acc),
Order :: key_order | sqn_order.
book_objectfold(Pid, Tag, FoldAccT, SnapPreFold, Order) ->
RunnerType = {foldobjects_allkeys, Tag, FoldAccT, SnapPreFold, Order},
book_returnfolder(Pid, RunnerType).
%% @doc as book_objectfold/4, with the addition of some constraints on
%% the range of objects folded over. The 3rd argument `Bucket' limits
%% ths fold to that specific bucket only. The 4th argument `Limiter'
%% further constrains the fold. `Limiter' can be either a `Range' or
%% `Index' query. `Range' is either that atom `all', meaning {min,
%% max}, or, a two tuple of start key and end key, inclusive. Index
%% Query is a 3-tuple of `{IndexField, StartTerm, EndTerm}`, just as
%% in book_indexfold/5
-spec book_objectfold(pid(), Tag, Bucket, Limiter, FoldAccT, SnapPreFold) ->
{async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Value, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
Key :: term(),
Value :: term(),
Limiter :: Range | Index,
Range :: {StartKey, EndKey} | all,
Index :: {IndexField, Start, End},
IndexField::term(),
IndexVal::term(),
Start::IndexVal,
End::IndexVal,
StartKey :: Key,
EndKey :: Key,
SnapPreFold :: boolean(),
Runner :: fun(() -> Acc).
book_objectfold(Pid, Tag, Bucket, Limiter, FoldAccT, SnapPreFold) ->
RunnerType =
case Limiter of
all ->
{foldobjects_bybucket, Tag, Bucket, all, FoldAccT, SnapPreFold};
Range when is_tuple(Range) andalso size(Range) == 2 ->
{foldobjects_bybucket, Tag, Bucket, Range, FoldAccT, SnapPreFold};
IndexQuery when is_tuple(IndexQuery) andalso size(IndexQuery) == 3 ->
IndexQuery = Limiter,
{foldobjects_byindex, Tag, Bucket, IndexQuery, FoldAccT, SnapPreFold}
end,
book_returnfolder(Pid, RunnerType).
%% @doc LevelEd stores not just Keys in the ledger, but also may store
%% object metadata, referred to as heads (after Riak head request for
%% object metadata) Often when folding over objects all that is really
%% required is the object metadata. These "headfolds" are an efficient
%% way to fold over the ledger (possibly wholly in memory) and get
%% object metadata.
%%
%% Fold over the object's head. `Tag' is the tagged type of the
%% objects to fold over. `FoldAccT' is a 2-tuple. The 1st element is a
%% 4-arity fold fun, that takes a Bucket, Key, ProxyObject, and the
%% `Acc'. The ProxyObject is an object that only contains the
%% head/metadata, and no object data from the journal. The `Acc' in
%% the first call is that provided as the second element of `FoldAccT'
%% and thereafter the return of the previous all to the fold fun. If
%% `JournalCheck' is `true' then the journal is checked to see if the
%% object in the ledger is present, which means a snapshot of the
%% whole store is required, if `false', then no such check is
%% performed, and onlt ledger need be snapshotted. `SnapPreFold' is a
%% boolean that determines if the snapshot is taken when the folder is
%% requested `true', or when when run `false'. `SegmentList' can be
%% `false' meaning, all heads, or a list of integers that designate
%% segments in a TicTac Tree.
-spec book_headfold(pid(), Tag, FoldAccT, JournalCheck, SnapPreFold, SegmentList) ->
{async, Runner} when
Tag :: leveled_codec:tag(),
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Value, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
Key :: term(),
Value :: term(),
JournalCheck :: boolean(),
SnapPreFold :: boolean(),
SegmentList :: false | list(integer()),
Runner :: fun(() -> Acc).
book_headfold(Pid, Tag, FoldAccT, JournalCheck, SnapPreFold, SegmentList) ->
book_headfold(Pid, Tag, all,
FoldAccT, JournalCheck, SnapPreFold,
SegmentList, false, false).
%% @doc as book_headfold/6, but with the addition of a `Limiter' that
%% restricts the set of objects folded over. `Limiter' can either be a
%% bucket list, or a key range of a single bucket. For bucket list,
%% the `Limiter' should be a 2-tuple, the first element the tag
%% `bucket_list' and the second a `list()' of `Bucket'. Only heads
%% from the listed buckets will be folded over. A single bucket key
%% range may also be used as a `Limiter', in which case the argument
%% is a 3-tuple of `{range ,Bucket, Range}' where `Bucket' is a
%% bucket, and `Range' is a 2-tuple of start key and end key,
%% inclusive, or the atom `all'. The rest of the arguments are as
%% `book_headfold/6'
-spec book_headfold(pid(), Tag, Limiter, FoldAccT, JournalCheck, SnapPreFold, SegmentList) ->
{async, Runner} when
Tag :: leveled_codec:tag(),
Limiter :: BucketList | BucketKeyRange,
BucketList :: {bucket_list, list(Bucket)},
BucketKeyRange :: {range, Bucket, KeyRange},
KeyRange :: {StartKey, EndKey} | all,
StartKey :: Key,
EndKey :: Key,
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Value, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
Key :: term(),
Value :: term(),
JournalCheck :: boolean(),
SnapPreFold :: boolean(),
SegmentList :: false | list(integer()),
Runner :: fun(() -> Acc).
book_headfold(Pid, Tag, Limiter, FoldAccT, JournalCheck, SnapPreFold, SegmentList) ->
book_headfold(Pid, Tag, Limiter,
FoldAccT, JournalCheck, SnapPreFold,
SegmentList, false, false).
%% @doc as book_headfold/7, but with the addition of a Last Modified Date
%% Range and Max Object Count. For version 2 objects this will filter out
%% all objects with a highest Last Modified Date that is outside of the range.
%% All version 1 objects will be included in the result set regardless of Last
%% Modified Date.
%% The Max Object Count will stop the fold once the count has been reached on
%% this store only. The Max Object Count if provided will mean that the runner
%% will return {RemainingCount, Acc} not just Acc
-spec book_headfold(pid(), Tag, Limiter, FoldAccT, JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount) ->
{async, Runner} when
Tag :: leveled_codec:tag(),
Limiter :: BucketList | BucketKeyRange | all,
BucketList :: {bucket_list, list(Bucket)},
BucketKeyRange :: {range, Bucket, KeyRange},
KeyRange :: {StartKey, EndKey} | all,
StartKey :: Key,
EndKey :: Key,
FoldAccT :: {FoldFun, Acc},
FoldFun :: fun((Bucket, Key, Value, Acc) -> Acc),
Acc :: term(),
Bucket :: term(),
Key :: term(),
Value :: term(),
JournalCheck :: boolean(),
SnapPreFold :: boolean(),
SegmentList :: false | list(integer()),
LastModRange :: false | leveled_codec:lastmod_range(),
MaxObjectCount :: false | pos_integer(),
Runner :: fun(() -> ResultingAcc),
ResultingAcc :: Acc | {non_neg_integer(), Acc}.
book_headfold(Pid, Tag, {bucket_list, BucketList}, FoldAccT, JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount) ->
RunnerType =
{foldheads_bybucket, Tag, BucketList, bucket_list, FoldAccT,
JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount},
book_returnfolder(Pid, RunnerType);
book_headfold(Pid, Tag, {range, Bucket, KeyRange}, FoldAccT, JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount) ->
RunnerType =
{foldheads_bybucket, Tag, Bucket, KeyRange, FoldAccT,
JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount},
book_returnfolder(Pid, RunnerType);
book_headfold(Pid, Tag, all, FoldAccT, JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount) ->
RunnerType = {foldheads_allkeys, Tag, FoldAccT,
JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount},
book_returnfolder(Pid, RunnerType).
-spec book_snapshot(pid(),
store|ledger,
tuple()|undefined,
boolean()|undefined) -> {ok, pid(), pid()|null}.
%% @doc create a snapshot of the store
%%
%% Snapshot can be based on a pre-defined query (which will be used to filter
%% caches prior to copying for the snapshot), and can be defined as long
%% running to avoid timeouts (snapshots are generally expected to be required
%% for < 60s)
book_snapshot(Pid, SnapType, Query, LongRunning) ->
gen_server:call(Pid, {snapshot, SnapType, Query, LongRunning}, infinity).
-spec book_compactjournal(pid(), integer()) -> ok|busy.
-spec book_islastcompactionpending(pid()) -> boolean().
-spec book_trimjournal(pid()) -> ok.
%% @doc Call for compaction of the Journal
%%
%% the scheduling of Journla compaction is called externally, so it is assumed
%% in Riak it will be triggered by a vnode callback.
book_compactjournal(Pid, Timeout) ->
{R, _P} = gen_server:call(Pid, {compact_journal, Timeout}, infinity),
R.
%% @doc Check on progress of the last compaction
book_islastcompactionpending(Pid) ->
gen_server:call(Pid, confirm_compact, infinity).
%% @doc Trim the journal when in head_only mode
%%
%% In head_only mode the journlacna be trimmed of entries which are before the
%% persisted SQN. This is much quicker than compacting the journal
book_trimjournal(Pid) ->
gen_server:call(Pid, trim, infinity).
-spec book_close(pid()) -> ok.
-spec book_destroy(pid()) -> ok.
%% @doc Clean shutdown
%%
%% A clean shutdown will persist all the information in the Penciller memory
%% before closing, so shutdown is not instantaneous.
book_close(Pid) ->
gen_server:call(Pid, close, infinity).
%% @doc Close and clean-out files
book_destroy(Pid) ->
gen_server:call(Pid, destroy, infinity).
-spec book_hotbackup(pid()) -> {async, fun()}.
%% @doc Backup the Bookie
%% Return a function that will take a backup of a snapshot of the Journal.
%% The function will be 1-arity, and can be passed the absolute folder name
%% to store the backup.
%%
%% Backup files are hard-linked. Does not work in head_only mode, or if
%% index changes are used with a `recovr` compaction/reload strategy
book_hotbackup(Pid) ->
gen_server:call(Pid, hot_backup, infinity).
-spec book_isempty(pid(), leveled_codec:tag()) -> boolean().
%% @doc
%% Confirm if the store is empty, or if it contains a Key and Value for a
%% given tag
book_isempty(Pid, Tag) ->
FoldAccT = {fun(_B, _Acc) -> false end, true},
{async, Runner} = book_bucketlist(Pid, Tag, FoldAccT, first),
Runner().
-spec book_logsettings(pid()) -> {leveled_log:log_level(), list(string())}.
%% @doc
%% Retrieve the current log settings
book_logsettings(Pid) ->
gen_server:call(Pid, log_settings, infinity).
-spec book_loglevel(pid(), leveled_log:log_level()) -> ok.
%% @doc
%% Change the log level of the store
book_loglevel(Pid, LogLevel) ->
gen_server:cast(Pid, {log_level, LogLevel}).
-spec book_addlogs(pid(), list(string())) -> ok.
%% @doc
%% Add to the list of forced logs, a list of more forced logs
book_addlogs(Pid, ForcedLogs) ->
gen_server:cast(Pid, {add_logs, ForcedLogs}).
-spec book_removelogs(pid(), list(string())) -> ok.
%% @doc
%% Remove from the list of forced logs, a list of forced logs
book_removelogs(Pid, ForcedLogs) ->
gen_server:cast(Pid, {remove_logs, ForcedLogs}).
%% @doc
%% Return the Inker and Penciller - {ok, Inker, Penciller}. Used only in tests
book_returnactors(Pid) ->
gen_server:call(Pid, return_actors).
%%%============================================================================
%%% gen_server callbacks
%%%============================================================================
-spec init([open_options()]) -> {ok, book_state()}.
init([Opts]) ->
leveled_rand:seed(),
case {proplists:get_value(snapshot_bookie, Opts),
proplists:get_value(root_path, Opts)} of
{undefined, undefined} ->
{stop, no_root_path};
{undefined, _RP} ->
% Start from file not snapshot
% Must set log level first - as log level will be fetched within
% set_options/1. Also logs can now be added to set_options/1
LogLevel = proplists:get_value(log_level, Opts),
leveled_log:set_loglevel(LogLevel),
ForcedLogs = proplists:get_value(forced_logs, Opts),
leveled_log:add_forcedlogs(ForcedLogs),
DatabaseID = proplists:get_value(database_id, Opts),
leveled_log:set_databaseid(DatabaseID),
{InkerOpts, PencillerOpts} = set_options(Opts),
OverrideFunctions = proplists:get_value(override_functions, Opts),
SetFun =
fun({FuncName, Func}) ->
application:set_env(leveled, FuncName, Func)
end,
lists:foreach(SetFun, OverrideFunctions),
ConfiguredCacheSize =
max(proplists:get_value(cache_size, Opts), ?MIN_CACHE_SIZE),
CacheJitter =
max(1, ConfiguredCacheSize div (100 div ?CACHE_SIZE_JITTER)),
CacheSize =
ConfiguredCacheSize + erlang:phash2(self()) rem CacheJitter,
PCLMaxSize =
PencillerOpts#penciller_options.max_inmemory_tablesize,
CacheRatio = PCLMaxSize div ConfiguredCacheSize,
% It is expected that the maximum size of the penciller
% in-memory store should not be more than about 10 x the size
% of the ledger cache. In this case there will be a larger
% than tested list of ledger_caches in the penciller memory,
% and performance may be unpredictable
case CacheRatio > 32 of
true ->
leveled_log:log("B0020", [PCLMaxSize, ConfiguredCacheSize]);
false ->
ok
end,
PageCacheLevel = proplists:get_value(ledger_preloadpagecache_level, Opts),
{HeadOnly, HeadLookup, SSTPageCacheLevel} =
case proplists:get_value(head_only, Opts) of
false ->
{false, true, PageCacheLevel};
with_lookup ->
{true, true, PageCacheLevel};
no_lookup ->
{true, false, ?SST_PAGECACHELEVEL_NOLOOKUP}
end,
% Override the default page cache level - we want to load into the
% page cache many levels if we intend to support lookups, and only
% levels 0 and 1 otherwise
SSTOpts = PencillerOpts#penciller_options.sst_options,
SSTOpts0 = SSTOpts#sst_options{pagecache_level = SSTPageCacheLevel},
PencillerOpts0 =
PencillerOpts#penciller_options{sst_options = SSTOpts0},
State0 = #state{cache_size=CacheSize,
is_snapshot=false,
head_only=HeadOnly,
head_lookup = HeadLookup},
{Inker, Penciller} =
startup(InkerOpts, PencillerOpts0, State0),
NewETS = ets:new(mem, [ordered_set]),
leveled_log:log("B0001", [Inker, Penciller]),
{ok, State0#state{inker=Inker,
penciller=Penciller,
ledger_cache=#ledger_cache{mem = NewETS}}};
{Bookie, undefined} ->
{ok, Penciller, Inker} =
book_snapshot(Bookie, store, undefined, true),
leveled_log:log("B0002", [Inker, Penciller]),
{ok, #state{penciller=Penciller,
inker=Inker,
is_snapshot=true}}
end.
handle_call({put, Bucket, Key, Object, IndexSpecs, Tag, TTL, DataSync},
From, State) when State#state.head_only == false ->
LedgerKey = leveled_codec:to_ledgerkey(Bucket, Key, Tag),
SW0 = os:timestamp(),
{ok, SQN, ObjSize} = leveled_inker:ink_put(State#state.inker,
LedgerKey,
Object,
{IndexSpecs, TTL},
DataSync),
{SW1, Timings1} =
update_timings(SW0, {put, {inker, ObjSize}}, State#state.put_timings),
Changes = preparefor_ledgercache(null,
LedgerKey,
SQN,
Object,
ObjSize,
{IndexSpecs, TTL}),
Cache0 = addto_ledgercache(Changes, State#state.ledger_cache),
{_SW2, Timings2} = update_timings(SW1, {put, mem}, Timings1),
{Timings, CountDown} =
update_statetimings(put, Timings2, State#state.put_countdown),
% If the previous push to memory was returned then punish this PUT with
% a delay. If the back-pressure in the Penciller continues, these
% delays will beocme more frequent
case State#state.slow_offer of
true ->
gen_server:reply(From, pause);
false ->
gen_server:reply(From, ok)
end,
maybe_longrunning(SW0, overall_put),
case maybepush_ledgercache(State#state.cache_size,
Cache0,
State#state.penciller) of
{ok, NewCache} ->
{noreply, State#state{ledger_cache = NewCache,
put_timings = Timings,
put_countdown = CountDown,
slow_offer = false}};
{returned, NewCache} ->
{noreply, State#state{ledger_cache = NewCache,
put_timings = Timings,
put_countdown = CountDown,
slow_offer = true}}
end;
handle_call({mput, ObjectSpecs, TTL}, From, State)
when State#state.head_only == true ->
{ok, SQN} =
leveled_inker:ink_mput(State#state.inker, dummy, {ObjectSpecs, TTL}),
Changes =
preparefor_ledgercache(?INKT_MPUT, ?DUMMY,
SQN, null, length(ObjectSpecs),
{ObjectSpecs, TTL}),
Cache0 = addto_ledgercache(Changes, State#state.ledger_cache),
case State#state.slow_offer of
true ->
gen_server:reply(From, pause);
false ->
gen_server:reply(From, ok)
end,
case maybepush_ledgercache(State#state.cache_size,
Cache0,
State#state.penciller) of
{ok, NewCache} ->
{noreply, State#state{ledger_cache = NewCache,
slow_offer = false}};
{returned, NewCache} ->
{noreply, State#state{ledger_cache = NewCache,
slow_offer = true}}
end;
handle_call({get, Bucket, Key, Tag}, _From, State)
when State#state.head_only == false ->
LedgerKey = leveled_codec:to_ledgerkey(Bucket, Key, Tag),
SWh = os:timestamp(),
{H0, UpdCR} =
fetch_head(LedgerKey,
State#state.penciller,
State#state.ledger_cache,
State#state.cache_ratio),
HeadResult =
case H0 of
not_present ->
not_found;
Head ->
{Seqn, Status, _MH, _MD} =
leveled_codec:striphead_to_v1details(Head),
case Status of
tomb ->
not_found;
{active, TS} ->
case TS >= leveled_util:integer_now() of
false ->
not_found;
true ->
{LedgerKey, Seqn}
end
end
end,
{SWb, Timings1} =
update_timings(SWh, {get, head}, State#state.get_timings),
{Reply, Timings2} =
case HeadResult of
not_found ->
{not_found, Timings1};
{LK, SQN} ->
Object = fetch_value(State#state.inker, {LK, SQN}),
{_SW, UpdTimingsB} =
update_timings(SWb, {get, body}, Timings1),
case Object of
not_present ->
{not_found, UpdTimingsB};
_ ->
{{ok, Object}, UpdTimingsB}
end
end,
{Timings, CountDown} =
update_statetimings(get, Timings2, State#state.get_countdown),
{reply,
Reply,
State#state{get_timings = Timings,
get_countdown = CountDown,
cache_ratio =
maybelog_cacheratio(UpdCR, State#state.is_snapshot)}};
handle_call({head, Bucket, Key, Tag, SQNOnly}, _From, State)
when State#state.head_lookup == true ->
SWp = os:timestamp(),
LK = leveled_codec:to_ledgerkey(Bucket, Key, Tag),
{Head, UpdCR} =
fetch_head(LK,
State#state.penciller,
State#state.ledger_cache,
State#state.cache_ratio,
State#state.head_only),
{SWr, UpdTimingsP} =
update_timings(SWp, {head, pcl}, State#state.head_timings),
{LedgerMD, SQN, JournalCheckFrequency} =
case Head of
not_present ->
{not_found, null, State#state.ink_checking};
Head ->
case leveled_codec:striphead_to_v1details(Head) of
{_SeqN, tomb, _MH, _MD} ->
{not_found, null, State#state.ink_checking};
{SeqN, {active, TS}, _MH, MD} ->
case TS >= leveled_util:integer_now() of
true ->
CheckFrequency =
case State#state.head_only of
true ->
0;
false ->
State#state.ink_checking
end,
case journal_notfound(CheckFrequency,
State#state.inker,
LK,
SeqN) of
{true, UppedFrequency} ->
{not_found, null, UppedFrequency};
{false, ReducedFrequency} ->
{MD, SeqN, ReducedFrequency}
end;
false ->
{not_found, null, State#state.ink_checking}
end
end
end,
Reply =
case {LedgerMD, SQNOnly} of
{not_found, _} ->
not_found;
{_, false} ->
{ok, leveled_head:build_head(Tag, LedgerMD)};
{_, true} ->
{ok, SQN}
end,
{_SW, UpdTimingsR} =
update_timings(SWr, {head, rsp}, UpdTimingsP),
{UpdTimings, CountDown} =
update_statetimings(head,
UpdTimingsR,
State#state.head_countdown),
{reply,
Reply,
State#state{head_timings = UpdTimings,
head_countdown = CountDown,
ink_checking = JournalCheckFrequency,
cache_ratio =
maybelog_cacheratio(UpdCR, State#state.is_snapshot)}};
handle_call({snapshot, SnapType, Query, LongRunning}, _From, State) ->
% Snapshot the store, specifying if the snapshot should be long running
% (i.e. will the snapshot be queued or be required for an extended period
% e.g. many minutes)
Reply = snapshot_store(State, SnapType, Query, LongRunning),
{reply, Reply, State};
handle_call(log_settings, _From, State) ->
{reply, leveled_log:return_settings(), State};
handle_call({return_runner, QueryType}, _From, State) ->
SW = os:timestamp(),
Runner = get_runner(State, QueryType),
{_SW, Timings1} =
update_timings(SW, {fold, setup}, State#state.fold_timings),
{Timings, CountDown} =
update_statetimings(fold, Timings1, State#state.fold_countdown),
{reply, Runner, State#state{fold_timings = Timings,
fold_countdown = CountDown}};
handle_call({compact_journal, Timeout}, _From, State)
when State#state.head_only == false ->
case leveled_inker:ink_compactionpending(State#state.inker) of
true ->
{reply, {busy, undefined}, State};
false ->
{ok, PclSnap, null} =
snapshot_store(State, ledger, undefined, true),
R = leveled_inker:ink_compactjournal(State#state.inker,
PclSnap,
Timeout),
{reply, R, State}
end;
handle_call(confirm_compact, _From, State)
when State#state.head_only == false ->
{reply, leveled_inker:ink_compactionpending(State#state.inker), State};
handle_call(trim, _From, State) when State#state.head_only == true ->
PSQN = leveled_penciller:pcl_persistedsqn(State#state.penciller),
{reply, leveled_inker:ink_trim(State#state.inker, PSQN), State};
handle_call(hot_backup, _From, State) when State#state.head_only == false ->
ok = leveled_inker:ink_roll(State#state.inker),
BackupFun =
fun(InkerSnapshot) ->
fun(BackupPath) ->
ok = leveled_inker:ink_backup(InkerSnapshot, BackupPath),
ok = leveled_inker:ink_close(InkerSnapshot)
end
end,
InkerOpts =
#inker_options{start_snapshot = true,
source_inker = State#state.inker,
bookies_pid = self()},
{ok, Snapshot} = leveled_inker:ink_snapstart(InkerOpts),
{reply, {async, BackupFun(Snapshot)}, State};
handle_call(close, _From, State) ->
leveled_inker:ink_close(State#state.inker),
leveled_penciller:pcl_close(State#state.penciller),
{stop, normal, ok, State};
handle_call(destroy, _From, State=#state{is_snapshot=Snp}) when Snp == false ->
leveled_log:log("B0011", []),
{ok, InkPathList} = leveled_inker:ink_doom(State#state.inker),
{ok, PCLPathList} = leveled_penciller:pcl_doom(State#state.penciller),
lists:foreach(fun(DirPath) -> delete_path(DirPath) end, InkPathList),
lists:foreach(fun(DirPath) -> delete_path(DirPath) end, PCLPathList),
{stop, normal, ok, State};
handle_call(return_actors, _From, State) ->
{reply, {ok, State#state.inker, State#state.penciller}, State};
handle_call(Msg, _From, State) ->
{reply, {unsupported_message, element(1, Msg)}, State}.
handle_cast({log_level, LogLevel}, State) ->
PCL = State#state.penciller,
INK = State#state.inker,
ok = leveled_penciller:pcl_loglevel(PCL, LogLevel),
ok = leveled_inker:ink_loglevel(INK, LogLevel),
ok = leveled_log:set_loglevel(LogLevel),
{noreply, State};
handle_cast({add_logs, ForcedLogs}, State) ->
PCL = State#state.penciller,
INK = State#state.inker,
ok = leveled_penciller:pcl_addlogs(PCL, ForcedLogs),
ok = leveled_inker:ink_addlogs(INK, ForcedLogs),
ok = leveled_log:add_forcedlogs(ForcedLogs),
{noreply, State};
handle_cast({remove_logs, ForcedLogs}, State) ->
PCL = State#state.penciller,
INK = State#state.inker,
ok = leveled_penciller:pcl_removelogs(PCL, ForcedLogs),
ok = leveled_inker:ink_removelogs(INK, ForcedLogs),
ok = leveled_log:remove_forcedlogs(ForcedLogs),
{noreply, State}.
handle_info(_Info, State) ->
{noreply, State}.
terminate(Reason, _State) ->
leveled_log:log("B0003", [Reason]).
code_change(_OldVsn, State, _Extra) ->
{ok, State}.
%%%============================================================================
%%% External functions
%%%============================================================================
-spec empty_ledgercache() -> ledger_cache().
%% @doc
%% Empty the ledger cache table following a push
empty_ledgercache() ->
#ledger_cache{mem = ets:new(empty, [ordered_set])}.
-spec push_to_penciller(pid(), ledger_cache()) -> ok.
%% @doc
%% The push to penciller must start as a tree to correctly de-duplicate
%% the list by order before becoming a de-duplicated list for loading
push_to_penciller(Penciller, LedgerCache) ->
push_to_penciller_loop(Penciller, loadqueue_ledgercache(LedgerCache)).
push_to_penciller_loop(Penciller, LedgerCache) ->
case push_ledgercache(Penciller, LedgerCache) of
returned ->
timer:sleep(?LOADING_PAUSE),
push_to_penciller_loop(Penciller, LedgerCache);
ok ->
ok
end.
-spec push_ledgercache(pid(), ledger_cache()) -> ok|returned.
%% @doc
%% Push the ledgercache to the Penciller - which should respond ok or
%% returned. If the response is ok the cache can be flushed, but if the
%% response is returned the cache should continue to build and it should try
%% to flush at a later date
push_ledgercache(Penciller, Cache) ->
CacheToLoad = {Cache#ledger_cache.loader,
Cache#ledger_cache.index,
Cache#ledger_cache.min_sqn,
Cache#ledger_cache.max_sqn},
leveled_penciller:pcl_pushmem(Penciller, CacheToLoad).
-spec loadqueue_ledgercache(ledger_cache()) -> ledger_cache().
%% @doc
%% The ledger cache can be built from a queue, for example when loading the
%% ledger from the head of the journal on startup
%%
%% The queue should be build using [NewKey|Acc] so that the most recent
%% key is kept in the sort
loadqueue_ledgercache(Cache) ->
SL = lists:ukeysort(1, Cache#ledger_cache.load_queue),
T = leveled_tree:from_orderedlist(SL, ?CACHE_TYPE),
Cache#ledger_cache{load_queue = [], loader = T}.
-spec snapshot_store(ledger_cache(),
pid(), null|pid(), store|ledger,
undefined|tuple(), undefined|boolean()) ->
{ok, pid(), pid()|null}.
%% @doc
%% Allow all a snapshot to be created from part of the store, preferably
%% passing in a query filter so that all of the LoopState does not need to
%% be copied from the real actor to the clone
%%
%% SnapType can be store (requires journal and ledger) or ledger (requires
%% ledger only)
%%
%% Query can be no_lookup, indicating the snapshot will be used for non-specific
%% range queries and not direct fetch requests. {StartKey, EndKey} if the the
%% snapshot is to be used for one specific query only (this is much quicker to
%% setup, assuming the range is a small subset of the overall key space). If
%% lookup is required but the range isn't defined then 'undefined' should be
%% passed as the query
snapshot_store(LedgerCache, Penciller, Inker, SnapType, Query, LongRunning) ->
LedgerCacheReady = readycache_forsnapshot(LedgerCache, Query),
BookiesMem = {LedgerCacheReady#ledger_cache.loader,
LedgerCacheReady#ledger_cache.index,
LedgerCacheReady#ledger_cache.min_sqn,
LedgerCacheReady#ledger_cache.max_sqn},
PCLopts = #penciller_options{start_snapshot = true,
source_penciller = Penciller,
snapshot_query = Query,
snapshot_longrunning = LongRunning,
bookies_pid = self(),
bookies_mem = BookiesMem},
{ok, LedgerSnapshot} = leveled_penciller:pcl_snapstart(PCLopts),
case SnapType of
store ->
InkerOpts = #inker_options{start_snapshot=true,
bookies_pid = self(),
source_inker=Inker},
{ok, JournalSnapshot} = leveled_inker:ink_snapstart(InkerOpts),
{ok, LedgerSnapshot, JournalSnapshot};
ledger ->
{ok, LedgerSnapshot, null}
end.
snapshot_store(State, SnapType, Query, LongRunning) ->
snapshot_store(State#state.ledger_cache,
State#state.penciller,
State#state.inker,
SnapType,
Query,
LongRunning).
-spec fetch_value(pid(), leveled_codec:journal_ref()) -> not_present|any().
%% @doc
%% Fetch a value from the Journal
fetch_value(Inker, {Key, SQN}) ->
SW = os:timestamp(),
case leveled_inker:ink_fetch(Inker, Key, SQN) of
{ok, Value} ->
maybe_longrunning(SW, inker_fetch),
Value;
not_present ->
not_present
end.
%%%============================================================================
%%% Internal functions
%%%============================================================================
-spec startup(#inker_options{}, #penciller_options{}, book_state())
-> {pid(), pid()}.
%% @doc
%% Startup the Inker and the Penciller, and prompt the loading of the Penciller
%% from the Inker. The Penciller may be shutdown without the latest data
%% having been persisted: and so the Iker must be able to update the Penciller
%% on startup with anything that happened but wasn't flushed to disk.
startup(InkerOpts, PencillerOpts, State) ->
{ok, Inker} = leveled_inker:ink_start(InkerOpts),
{ok, Penciller} = leveled_penciller:pcl_start(PencillerOpts),
LedgerSQN = leveled_penciller:pcl_getstartupsequencenumber(Penciller),
leveled_log:log("B0005", [LedgerSQN]),
ReloadStrategy = InkerOpts#inker_options.reload_strategy,
LoadFun = get_loadfun(ReloadStrategy, Penciller, State),
BatchFun =
fun(BatchAcc, _Acc) ->
push_to_penciller(Penciller, BatchAcc)
end,
InitAccFun =
fun(FN, CurrentMinSQN) ->
leveled_log:log("I0014", [FN, CurrentMinSQN]),
empty_ledgercache()
end,
ok = leveled_inker:ink_loadpcl(Inker,
LedgerSQN + 1,
LoadFun,
InitAccFun,
BatchFun),
ok = leveled_inker:ink_checksqn(Inker, LedgerSQN),
{Inker, Penciller}.
-spec set_defaults(list()) -> open_options().
%% @doc
%% Set any pre-defined defaults for options if the option is not present in
%% the passed in options
set_defaults(Opts) ->
lists:ukeymerge(1,
lists:ukeysort(1, Opts),
lists:ukeysort(1, ?OPTION_DEFAULTS)).
-spec set_options(open_options()) -> {#inker_options{}, #penciller_options{}}.
%% @doc
%% Take the passed in property list of operations and extract out any relevant
%% options to the Inker or the Penciller
set_options(Opts) ->
MaxJournalSize0 =
min(?ABSOLUTEMAX_JOURNALSIZE,
proplists:get_value(max_journalsize, Opts)),
JournalSizeJitter = MaxJournalSize0 div (100 div ?JOURNAL_SIZE_JITTER),
MaxJournalSize =
min(?ABSOLUTEMAX_JOURNALSIZE,
MaxJournalSize0 - erlang:phash2(self()) rem JournalSizeJitter),
MaxJournalCount0 =
proplists:get_value(max_journalobjectcount, Opts),
JournalCountJitter = MaxJournalCount0 div (100 div ?JOURNAL_SIZE_JITTER),
MaxJournalCount =
MaxJournalCount0 - erlang:phash2(self()) rem JournalCountJitter,
SyncStrat = proplists:get_value(sync_strategy, Opts),
WRP = proplists:get_value(waste_retention_period, Opts),
SnapTimeoutShort = proplists:get_value(snapshot_timeout_short, Opts),
SnapTimeoutLong = proplists:get_value(snapshot_timeout_long, Opts),
AltStrategy = proplists:get_value(reload_strategy, Opts),
ReloadStrategy = leveled_codec:inker_reload_strategy(AltStrategy),
PCLL0CacheSize =
max(?MIN_PCL_CACHE_SIZE,
proplists:get_value(max_pencillercachesize, Opts)),
RootPath = proplists:get_value(root_path, Opts),
JournalFP = filename:join(RootPath, ?JOURNAL_FP),
LedgerFP = filename:join(RootPath, ?LEDGER_FP),
ok = filelib:ensure_dir(JournalFP),
ok = filelib:ensure_dir(LedgerFP),
SFL_CompPerc =
proplists:get_value(singlefile_compactionpercentage, Opts),
MRL_CompPerc =
proplists:get_value(maxrunlength_compactionpercentage, Opts),
true = MRL_CompPerc >= SFL_CompPerc,
true = 100.0 >= MRL_CompPerc,
true = SFL_CompPerc >= 0.0,
CompressionMethod = proplists:get_value(compression_method, Opts),
CompressOnReceipt =
case proplists:get_value(compression_point, Opts) of
on_receipt ->
% Note this will add measurable delay to PUT time
% https://github.com/martinsumner/leveled/issues/95
true;
on_compact ->
% If using lz4 this is not recommended
false
end,
MaxSSTSlots = proplists:get_value(max_sstslots, Opts),
ScoreOneIn = proplists:get_value(journalcompaction_scoreonein, Opts),
{#inker_options{root_path = JournalFP,
reload_strategy = ReloadStrategy,
max_run_length = proplists:get_value(max_run_length, Opts),
singlefile_compactionperc = SFL_CompPerc,
maxrunlength_compactionperc = MRL_CompPerc,
waste_retention_period = WRP,
snaptimeout_long = SnapTimeoutLong,
compression_method = CompressionMethod,
compress_on_receipt = CompressOnReceipt,
score_onein = ScoreOneIn,
cdb_options =
#cdb_options{max_size=MaxJournalSize,
max_count=MaxJournalCount,
binary_mode=true,
sync_strategy=SyncStrat,
log_options=leveled_log:get_opts()}},
#penciller_options{root_path = LedgerFP,
max_inmemory_tablesize = PCLL0CacheSize,
levelzero_cointoss = true,
snaptimeout_short = SnapTimeoutShort,
snaptimeout_long = SnapTimeoutLong,
sst_options =
#sst_options{press_method=CompressionMethod,
log_options=leveled_log:get_opts(),
max_sstslots=MaxSSTSlots}}
}.
-spec return_snapfun(book_state(), store|ledger,
tuple()|no_lookup|undefined,
boolean(), boolean()) -> fun().
%% @doc
%% Generates a function from which a snapshot can be created. The primary
%% factor here is the SnapPreFold boolean. If this is true then the snapshot
%% will be taken before the Fold function is returned. If SnapPreFold is
%% false then the snapshot will be taken when the Fold function is called.
%%
%% SnapPrefold is to be used when the intention is to queue the fold, and so
%% claling of the fold may be delayed, but it is still desired that the fold
%% represent the point in time that the query was requested.
return_snapfun(State, SnapType, Query, LongRunning, SnapPreFold) ->
case SnapPreFold of
true ->
{ok, LS, JS} = snapshot_store(State, SnapType, Query, LongRunning),
fun() -> {ok, LS, JS} end;
false ->
Self = self(),
% Timeout will be ignored, as will Requestor
%
% This uses the external snapshot - as the snapshot will need
% to have consistent state between Bookie and Penciller when
% it is made.
fun() -> book_snapshot(Self, SnapType, Query, LongRunning) end
end.
-spec snaptype_by_presence(boolean()) -> store|ledger.
%% @doc
%% Folds that traverse over object heads, may also either require to return
%% the object, or at least confirm the object is present in the Ledger. This
%% is achieved by enabling presence - and this will change the type of
%% snapshot to one that covers the whole store (i.e. both ledger and journal),
%% rather than just the ledger.
snaptype_by_presence(true) ->
store;
snaptype_by_presence(false) ->
ledger.
-spec get_runner(book_state(), tuple()) -> {async, fun()}.
%% @doc
%% Get an {async, Runner} for a given fold type. Fold types have different
%% tuple inputs
get_runner(State, {index_query, Constraint, FoldAccT, Range, TermHandling}) ->
{IdxFld, StartT, EndT} = Range,
{Bucket, ObjKey0} =
case Constraint of
{B, SK} ->
{B, SK};
B ->
{B, null}
end,
StartKey =
leveled_codec:to_ledgerkey(Bucket, ObjKey0, ?IDX_TAG, IdxFld, StartT),
EndKey =
leveled_codec:to_ledgerkey(Bucket, null, ?IDX_TAG, IdxFld, EndT),
SnapFun = return_snapfun(State, ledger, {StartKey, EndKey}, false, false),
leveled_runner:index_query(SnapFun,
{StartKey, EndKey, TermHandling},
FoldAccT);
get_runner(State, {keylist, Tag, FoldAccT}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucketkey_query(SnapFun, Tag, null, FoldAccT);
get_runner(State, {keylist, Tag, Bucket, FoldAccT}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucketkey_query(SnapFun, Tag, Bucket, FoldAccT);
get_runner(State, {keylist, Tag, Bucket, KeyRange, FoldAccT, TermRegex}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucketkey_query(SnapFun,
Tag, Bucket, KeyRange,
FoldAccT, TermRegex);
%% Set of runners for object or metadata folds
get_runner(State,
{foldheads_allkeys,
Tag, FoldFun,
JournalCheck, SnapPreFold, SegmentList,
LastModRange, MaxObjectCount}) ->
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, no_lookup, true, SnapPreFold),
leveled_runner:foldheads_allkeys(SnapFun,
Tag, FoldFun,
JournalCheck, SegmentList,
LastModRange, MaxObjectCount);
get_runner(State,
{foldobjects_allkeys, Tag, FoldFun, SnapPreFold}) ->
get_runner(State,
{foldobjects_allkeys, Tag, FoldFun, SnapPreFold, key_order});
get_runner(State,
{foldobjects_allkeys, Tag, FoldFun, SnapPreFold, key_order}) ->
SnapFun = return_snapfun(State, store, no_lookup, true, SnapPreFold),
leveled_runner:foldobjects_allkeys(SnapFun, Tag, FoldFun, key_order);
get_runner(State,
{foldobjects_allkeys, Tag, FoldFun, SnapPreFold, sqn_order}) ->
SnapFun = return_snapfun(State, store, undefined, true, SnapPreFold),
leveled_runner:foldobjects_allkeys(SnapFun, Tag, FoldFun, sqn_order);
get_runner(State,
{foldheads_bybucket,
Tag,
BucketList, bucket_list,
FoldFun,
JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount}) ->
KeyRangeFun =
fun(Bucket) ->
{StartKey, EndKey, _} = return_ledger_keyrange(Tag, Bucket, all),
{StartKey, EndKey}
end,
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, no_lookup, true, SnapPreFold),
leveled_runner:foldheads_bybucket(SnapFun,
Tag,
lists:map(KeyRangeFun, BucketList),
FoldFun,
JournalCheck,
SegmentList,
LastModRange, MaxObjectCount);
get_runner(State,
{foldheads_bybucket,
Tag,
Bucket, KeyRange,
FoldFun,
JournalCheck, SnapPreFold,
SegmentList, LastModRange, MaxObjectCount}) ->
{StartKey, EndKey, SnapQ} = return_ledger_keyrange(Tag, Bucket, KeyRange),
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, SnapQ, true, SnapPreFold),
leveled_runner:foldheads_bybucket(SnapFun,
Tag,
[{StartKey, EndKey}],
FoldFun,
JournalCheck,
SegmentList,
LastModRange, MaxObjectCount);
get_runner(State,
{foldobjects_bybucket,
Tag, Bucket, KeyRange,
FoldFun,
SnapPreFold}) ->
{StartKey, EndKey, SnapQ} = return_ledger_keyrange(Tag, Bucket, KeyRange),
SnapFun = return_snapfun(State, store, SnapQ, true, SnapPreFold),
leveled_runner:foldobjects_bybucket(SnapFun,
Tag,
[{StartKey, EndKey}],
FoldFun);
get_runner(State,
{foldobjects_byindex,
Tag, Bucket, {Field, FromTerm, ToTerm},
FoldObjectsFun,
SnapPreFold}) ->
SnapFun = return_snapfun(State, store, no_lookup, true, SnapPreFold),
leveled_runner:foldobjects_byindex(SnapFun,
{Tag, Bucket, Field, FromTerm, ToTerm},
FoldObjectsFun);
get_runner(State, {bucket_list, Tag, FoldAccT}) ->
{FoldBucketsFun, Acc} = FoldAccT,
SnapFun = return_snapfun(State, ledger, no_lookup, false, false),
leveled_runner:bucket_list(SnapFun, Tag, FoldBucketsFun, Acc);
get_runner(State, {first_bucket, Tag, FoldAccT}) ->
{FoldBucketsFun, Acc} = FoldAccT,
SnapFun = return_snapfun(State, ledger, no_lookup, false, false),
leveled_runner:bucket_list(SnapFun, Tag, FoldBucketsFun, Acc, 1);
%% Set of specific runners, primarily used as exmaples for tests
get_runner(State, DeprecatedQuery) ->
get_deprecatedrunner(State, DeprecatedQuery).
-spec get_deprecatedrunner(book_state(), tuple()) -> {async, fun()}.
%% @doc
%% Get an {async, Runner} for a given fold type. Fold types have different
%% tuple inputs. These folds are currently used in tests, but are deprecated.
%% Most of these folds should be achievable through other available folds.
get_deprecatedrunner(State, {bucket_stats, Bucket}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucket_sizestats(SnapFun, Bucket, ?STD_TAG);
get_deprecatedrunner(State, {riakbucket_stats, Bucket}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:bucket_sizestats(SnapFun, Bucket, ?RIAK_TAG);
get_deprecatedrunner(State, {hashlist_query, Tag, JournalCheck}) ->
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, no_lookup, true, true),
leveled_runner:hashlist_query(SnapFun, Tag, JournalCheck);
get_deprecatedrunner(State,
{tictactree_obj,
{Tag, Bucket, StartK, EndK, JournalCheck},
TreeSize,
PartitionFilter}) ->
SnapType = snaptype_by_presence(JournalCheck),
SnapFun = return_snapfun(State, SnapType, no_lookup, true, true),
leveled_runner:tictactree(SnapFun,
{Tag, Bucket, {StartK, EndK}},
JournalCheck,
TreeSize,
PartitionFilter);
get_deprecatedrunner(State,
{tictactree_idx,
{Bucket, IdxField, StartK, EndK},
TreeSize,
PartitionFilter}) ->
SnapFun = return_snapfun(State, ledger, no_lookup, true, true),
leveled_runner:tictactree(SnapFun,
{?IDX_TAG, Bucket, {IdxField, StartK, EndK}},
false,
TreeSize,
PartitionFilter).
-spec return_ledger_keyrange(atom(), any(), tuple()|all) ->
{tuple(), tuple(), tuple()|no_lookup}.
%% @doc
%% Convert a range of binary keys into a ledger key range, returning
%% {StartLK, EndLK, Query} where Query is to indicate whether the query
%% range is worth using to minimise the cost of the snapshot
return_ledger_keyrange(Tag, Bucket, KeyRange) ->
{StartKey, EndKey, Snap} =
case KeyRange of
all ->
{leveled_codec:to_ledgerkey(Bucket, null, Tag),
leveled_codec:to_ledgerkey(Bucket, null, Tag),
false};
{StartTerm, <<"$all">>} ->
{leveled_codec:to_ledgerkey(Bucket, StartTerm, Tag),
leveled_codec:to_ledgerkey(Bucket, null, Tag),
false};
{StartTerm, EndTerm} ->
{leveled_codec:to_ledgerkey(Bucket, StartTerm, Tag),
leveled_codec:to_ledgerkey(Bucket, EndTerm, Tag),
true}
end,
SnapQuery =
case Snap of
true ->
{StartKey, EndKey};
false ->
no_lookup
end,
{StartKey, EndKey, SnapQuery}.
-spec maybe_longrunning(erlang:timestamp(), atom()) -> ok.
%% @doc
%% Check the length of time an operation (named by Aspect) has taken, and
%% see if it has crossed the long running threshold. If so log to indicate
%% a long running event has occurred.
maybe_longrunning(SW, Aspect) ->
case timer:now_diff(os:timestamp(), SW) of
N when N > ?LONG_RUNNING ->
leveled_log:log("B0013", [N, Aspect]);
_ ->
ok
end.
-spec readycache_forsnapshot(ledger_cache(), tuple()|no_lookup|undefined)
-> ledger_cache().
%% @doc
%% Strip the ledger cach back to only the relevant information needed in
%% the query, and to make the cache a snapshot (and so not subject to changes
%% such as additions to the ets table)
readycache_forsnapshot(LedgerCache, {StartKey, EndKey}) ->
{KL, MinSQN, MaxSQN} = scan_table(LedgerCache#ledger_cache.mem,
StartKey,
EndKey),
case KL of
[] ->
#ledger_cache{loader=empty_cache,
index=empty_index,
min_sqn=MinSQN,
max_sqn=MaxSQN};
_ ->
#ledger_cache{loader=leveled_tree:from_orderedlist(KL,
?CACHE_TYPE),
index=empty_index,
min_sqn=MinSQN,
max_sqn=MaxSQN}
end;
readycache_forsnapshot(LedgerCache, Query) ->
% Need to convert the Ledger Cache away from using the ETS table
Tree = leveled_tree:from_orderedset(LedgerCache#ledger_cache.mem,
?CACHE_TYPE),
case leveled_tree:tsize(Tree) of
0 ->
#ledger_cache{loader=empty_cache,
index=empty_index,
min_sqn=LedgerCache#ledger_cache.min_sqn,
max_sqn=LedgerCache#ledger_cache.max_sqn};
_ ->
Idx =
case Query of
no_lookup ->
empty_index;
_ ->
LedgerCache#ledger_cache.index
end,
#ledger_cache{loader=Tree,
index=Idx,
min_sqn=LedgerCache#ledger_cache.min_sqn,
max_sqn=LedgerCache#ledger_cache.max_sqn}
end.
-spec scan_table(ets:tab(),
leveled_codec:ledger_key(), leveled_codec:ledger_key())
-> {list(leveled_codec:ledger_kv()),
non_neg_integer()|infinity,
non_neg_integer()}.
%% @doc
%% Query the ETS table to find a range of keys (start inclusive). Should also
%% return the miniumum and maximum sequence number found in the query. This
%% is just then used as a safety check when loading these results into the
%% penciller snapshot
scan_table(Table, StartKey, EndKey) ->
case ets:lookup(Table, StartKey) of
[] ->
scan_table(Table, StartKey, EndKey, [], infinity, 0);
[{StartKey, StartVal}] ->
SQN = leveled_codec:strip_to_seqonly({StartKey, StartVal}),
scan_table(Table, StartKey, EndKey,
[{StartKey, StartVal}], SQN, SQN)
end.
scan_table(Table, StartKey, EndKey, Acc, MinSQN, MaxSQN) ->
case ets:next(Table, StartKey) of
'$end_of_table' ->
{lists:reverse(Acc), MinSQN, MaxSQN};
NextKey ->
case leveled_codec:endkey_passed(EndKey, NextKey) of
true ->
{lists:reverse(Acc), MinSQN, MaxSQN};
false ->
[{NextKey, NextVal}] = ets:lookup(Table, NextKey),
SQN = leveled_codec:strip_to_seqonly({NextKey, NextVal}),
scan_table(Table,
NextKey,
EndKey,
[{NextKey, NextVal}|Acc],
min(MinSQN, SQN),
max(MaxSQN, SQN))
end
end.
-spec fetch_head(leveled_codec:ledger_key(), pid(), ledger_cache(),
cache_ratio()) ->
{not_present|leveled_codec:ledger_value(),
cache_ratio()}.
%% @doc
%% Fetch only the head of the object from the Ledger (or the bookie's recent
%% ledger cache if it has just been updated). not_present is returned if the
%% Key is not found
fetch_head(Key, Penciller, LedgerCache, CacheRatio) ->
fetch_head(Key, Penciller, LedgerCache, CacheRatio, false).
-spec fetch_head(leveled_codec:ledger_key(), pid(), ledger_cache(),
cache_ratio(), boolean())
-> {not_present|leveled_codec:ledger_value(),
cache_ratio()}.
%% doc
%% The L0Index needs to be bypassed when running head_only
fetch_head(Key, Penciller, LedgerCache, {RC, CC, HC}, HeadOnly) ->
SW = os:timestamp(),
CacheResult =
case LedgerCache#ledger_cache.mem of
undefined ->
[];
Tab ->
ets:lookup(Tab, Key)
end,
case CacheResult of
[{Key, Head}] ->
{Head, {RC + 1, CC + 1, HC + 1}};
[] ->
Hash = leveled_codec:segment_hash(Key),
UseL0Idx = not HeadOnly,
% don't use the L0Index in head only mode. Object specs don't
% get an addition on the L0 index
case leveled_penciller:pcl_fetch(Penciller, Key, Hash, UseL0Idx) of
{Key, Head} ->
maybe_longrunning(SW, pcl_head),
{Head, {RC + 1, CC, HC + 1}};
not_present ->
maybe_longrunning(SW, pcl_head),
{not_present, {RC + 1, CC, HC}}
end
end.
-spec journal_notfound(integer(), pid(), leveled_codec:ledger_key(), integer())
-> {boolean(), integer()}.
%% @doc Check to see if the item is not_found in the journal. If it is found
%% return false, and drop the counter that represents the frequency this check
%% should be made. If it is not_found, this is not expected so up the check
%% frequency to the maximum value
journal_notfound(CheckFrequency, Inker, LK, SQN) ->
check_notfound(CheckFrequency,
fun() ->
leveled_inker:ink_keycheck(Inker, LK, SQN)
end).
-spec check_notfound(integer(), fun(() -> probably|missing)) ->
{boolean(), integer()}.
%% @doc Use a function to check if an item is found
check_notfound(CheckFrequency, CheckFun) ->
case leveled_rand:uniform(?MAX_KEYCHECK_FREQUENCY) of
X when X =< CheckFrequency ->
case CheckFun() of
probably ->
{false, max(?MIN_KEYCHECK_FREQUENCY, CheckFrequency - 1)};
missing ->
{true, ?MAX_KEYCHECK_FREQUENCY}
end;
_X ->
{false, CheckFrequency}
end.
-spec preparefor_ledgercache(leveled_codec:journal_key_tag()|null,
leveled_codec:ledger_key()|?DUMMY,
non_neg_integer(), any(), integer(),
leveled_codec:journal_keychanges())
-> {leveled_codec:segment_hash(),
non_neg_integer(),
list(leveled_codec:ledger_kv())}.
%% @doc
%% Prepare an object and its related key changes for addition to the Ledger
%% via the Ledger Cache.
preparefor_ledgercache(?INKT_MPUT,
?DUMMY, SQN, _O, _S, {ObjSpecs, TTL}) ->
ObjChanges = leveled_codec:obj_objectspecs(ObjSpecs, SQN, TTL),
{no_lookup, SQN, ObjChanges};
preparefor_ledgercache(?INKT_KEYD,
LedgerKey, SQN, _Obj, _Size, {IdxSpecs, TTL}) ->
{Bucket, Key} = leveled_codec:from_ledgerkey(LedgerKey),
KeyChanges =
leveled_codec:idx_indexspecs(IdxSpecs, Bucket, Key, SQN, TTL),
{no_lookup, SQN, KeyChanges};
preparefor_ledgercache(_InkTag,
LedgerKey, SQN, Obj, Size, {IdxSpecs, TTL}) ->
{Bucket, Key, MetaValue, {KeyH, _ObjH}, _LastMods} =
leveled_codec:generate_ledgerkv(LedgerKey, SQN, Obj, Size, TTL),
KeyChanges =
[{LedgerKey, MetaValue}] ++
leveled_codec:idx_indexspecs(IdxSpecs, Bucket, Key, SQN, TTL),
{KeyH, SQN, KeyChanges}.
-spec recalcfor_ledgercache(leveled_codec:journal_key_tag()|null,
leveled_codec:ledger_key()|?DUMMY,
non_neg_integer(), any(), integer(),
leveled_codec:journal_keychanges(),
ledger_cache(),
pid())
-> {leveled_codec:segment_hash(),
non_neg_integer(),
list(leveled_codec:ledger_kv())}.
%% @doc
%% When loading from the journal to the ledger, may hit a key which has the
%% `recalc` strategy. Such a key needs to recalculate the key changes by
%% comparison with the current state of the ledger, assuming it is a full
%% journal entry (i.e. KeyDeltas which may be a result of previously running
%% with a retain strategy should be ignored).
recalcfor_ledgercache(InkTag,
_LedgerKey, SQN, _Obj, _Size, {_IdxSpecs, _TTL},
_LedgerCache,
_Penciller)
when InkTag == ?INKT_MPUT; InkTag == ?INKT_KEYD ->
{no_lookup, SQN, []};
recalcfor_ledgercache(_InkTag,
LK, SQN, Obj, Size, {_IgnoreJournalIdxSpecs, TTL},
LedgerCache,
Penciller) ->
{Bucket, Key, MetaValue, {KeyH, _ObjH}, _LastMods} =
leveled_codec:generate_ledgerkv(LK, SQN, Obj, Size, TTL),
OldObject =
case check_in_ledgercache(LK, KeyH, LedgerCache, loader) of
false ->
leveled_penciller:pcl_fetch(Penciller, LK, KeyH, true);
{value, KV} ->
KV
end,
OldMetadata =
case OldObject of
not_present ->
not_present;
{LK, LV} ->
leveled_codec:get_metadata(LV)
end,
UpdMetadata = leveled_codec:get_metadata(MetaValue),
IdxSpecs =
leveled_head:diff_indexspecs(element(1, LK), UpdMetadata, OldMetadata),
{KeyH,
SQN,
[{LK, MetaValue}]
++ leveled_codec:idx_indexspecs(IdxSpecs, Bucket, Key, SQN, TTL)}.
-spec addto_ledgercache({leveled_codec:segment_hash(),
non_neg_integer(),
list(leveled_codec:ledger_kv())},
ledger_cache())
-> ledger_cache().
%% @doc
%% Add a set of changes associated with a single sequence number (journal
%% update) and key to the ledger cache. If the changes are not to be looked
%% up directly, then they will not be indexed to accelerate lookup
addto_ledgercache({H, SQN, KeyChanges}, Cache) ->
ets:insert(Cache#ledger_cache.mem, KeyChanges),
UpdIndex = leveled_pmem:prepare_for_index(Cache#ledger_cache.index, H),
Cache#ledger_cache{index = UpdIndex,
min_sqn=min(SQN, Cache#ledger_cache.min_sqn),
max_sqn=max(SQN, Cache#ledger_cache.max_sqn)}.
-spec addto_ledgercache({integer()|no_lookup,
integer(),
list(leveled_codec:ledger_kv())},
ledger_cache(),
loader)
-> ledger_cache().
%% @doc
%% Add a set of changes associated with a single sequence number (journal
%% update) to the ledger cache. This is used explicitly when loading the
%% ledger from the Journal (i.e. at startup) - and in this case the ETS insert
%% can be bypassed, as all changes will be flushed to the Penciller before the
%% load is complete.
addto_ledgercache({H, SQN, KeyChanges}, Cache, loader) ->
UpdQ = KeyChanges ++ Cache#ledger_cache.load_queue,
UpdIndex = leveled_pmem:prepare_for_index(Cache#ledger_cache.index, H),
Cache#ledger_cache{index = UpdIndex,
load_queue = UpdQ,
min_sqn=min(SQN, Cache#ledger_cache.min_sqn),
max_sqn=max(SQN, Cache#ledger_cache.max_sqn)}.
-spec check_in_ledgercache(leveled_codec:ledger_key(),
leveled_codec:segment_hash(),
ledger_cache(),
loader) ->
false | {value, leveled_codec:ledger_kv()}.
%% @doc
%% Check the ledger cache for a Key, when the ledger cache is in loader mode
%% and so is populating a queue not an ETS table
check_in_ledgercache(PK, Hash, Cache, loader) ->
case leveled_pmem:check_index(Hash, Cache#ledger_cache.index) of
[] ->
false;
_ ->
search(fun({K,_V}) -> K == PK end,
lists:reverse(Cache#ledger_cache.load_queue))
end.
-spec search(fun((any()) -> boolean()), list()) -> {value, any()}|false.
search(Pred, [Hd|Tail]) ->
case Pred(Hd) of
true -> {value, Hd};
false -> search(Pred, Tail)
end;
search(Pred, []) when is_function(Pred, 1) ->
false.
-spec maybepush_ledgercache(integer(), ledger_cache(), pid())
-> {ok|returned, ledger_cache()}.
%% @doc
%% Following an update to the ledger cache, check if this now big enough to be
%% pushed down to the Penciller. There is some random jittering here, to
%% prevent coordination across leveled instances (e.g. when running in Riak).
%%
%% The penciller may be too busy, as the LSM tree is backed up with merge
%% activity. In this case the update is not made and 'returned' not ok is set
%% in the reply. Try again later when it isn't busy (and also potentially
%% implement a slow_offer state to slow down the pace at which PUTs are being
%% received)
maybepush_ledgercache(MaxCacheSize, Cache, Penciller) ->
Tab = Cache#ledger_cache.mem,
CacheSize = ets:info(Tab, size),
TimeToPush = maybe_withjitter(CacheSize, MaxCacheSize),
if
TimeToPush ->
CacheToLoad = {Tab,
Cache#ledger_cache.index,
Cache#ledger_cache.min_sqn,
Cache#ledger_cache.max_sqn},
case leveled_penciller:pcl_pushmem(Penciller, CacheToLoad) of
ok ->
Cache0 = #ledger_cache{},
true = ets:delete(Tab),
NewTab = ets:new(mem, [ordered_set]),
{ok, Cache0#ledger_cache{mem=NewTab}};
returned ->
{returned, Cache}
end;
true ->
{ok, Cache}
end.
-spec maybe_withjitter(integer(), integer()) -> boolean().
%% @doc
%% Push down randomly, but the closer to 4 * the maximum size, the more likely
%% a push should be
maybe_withjitter(CacheSize, MaxCacheSize) when CacheSize > MaxCacheSize ->
R = leveled_rand:uniform(4 * MaxCacheSize),
(CacheSize - MaxCacheSize) > R;
maybe_withjitter(_CacheSize, _MaxCacheSize) ->
false.
-spec get_loadfun(leveled_codec:compaction_strategy(), pid(), book_state())
-> initial_loadfun().
%% @doc
%% The LoadFun will be used by the Inker when walking across the Journal to
%% load the Penciller at startup.
get_loadfun(ReloadStrat, Penciller, _State) ->
fun(KeyInJournal, ValueInJournal, _Pos, Acc0, ExtractFun) ->
{MinSQN, MaxSQN, LedgerCache} = Acc0,
{SQN, InkTag, PK} = KeyInJournal,
case SQN of
SQN when SQN < MinSQN ->
{loop, Acc0};
SQN when SQN > MaxSQN ->
leveled_log:log("B0007", [MaxSQN, SQN]),
{stop, Acc0};
_ ->
{VBin, ValSize} = ExtractFun(ValueInJournal),
% VBin may already be a term
{Obj, IdxSpecs} = leveled_codec:split_inkvalue(VBin),
Chngs =
case leveled_codec:get_tagstrategy(PK, ReloadStrat) of
recalc ->
recalcfor_ledgercache(InkTag, PK, SQN,
Obj, ValSize, IdxSpecs,
LedgerCache,
Penciller);
_ ->
preparefor_ledgercache(InkTag, PK, SQN,
Obj, ValSize, IdxSpecs)
end,
case SQN of
MaxSQN ->
leveled_log:log("B0006", [SQN]),
LC0 = addto_ledgercache(Chngs, LedgerCache, loader),
{stop, {MinSQN, MaxSQN, LC0}};
_ ->
LC0 = addto_ledgercache(Chngs, LedgerCache, loader),
{loop, {MinSQN, MaxSQN, LC0}}
end
end
end.
delete_path(DirPath) ->
ok = filelib:ensure_dir(DirPath),
{ok, Files} = file:list_dir(DirPath),
[file:delete(filename:join([DirPath, File])) || File <- Files],
file:del_dir(DirPath).
%%%============================================================================
%%% Timing Functions
%%%============================================================================
-spec update_statetimings(timing_types(),
put_timings()|get_timings()|fold_timings()|head_timings(),
integer())
->
{put_timings()|get_timings()|fold_timings()|head_timings(),
integer()}.
%% @doc
%%
%% The timings state is either in countdown to the next set of samples of
%% we are actively collecting a sample. Active collection take place
%% when the countdown is 0. Once the sample has reached the expected count
%% then there is a log of that sample, and the countdown is restarted.
%%
%% Outside of sample windows the timings object should be set to the atom
%% no_timing. no_timing is a valid state for each timings type.
update_statetimings(head, no_timing, 0) ->
{#head_timings{}, 0};
update_statetimings(put, no_timing, 0) ->
{#put_timings{}, 0};
update_statetimings(get, no_timing, 0) ->
{#get_timings{}, 0};
update_statetimings(fold, no_timing, 0) ->
{#fold_timings{}, 0};
update_statetimings(head, Timings, 0) ->
case Timings#head_timings.sample_count of
SC when SC >= ?TIMING_SAMPLESIZE ->
log_timings(head, Timings),
{no_timing, leveled_rand:uniform(10 * ?TIMING_SAMPLECOUNTDOWN)};
_SC ->
{Timings, 0}
end;
update_statetimings(put, Timings, 0) ->
case Timings#put_timings.sample_count of
SC when SC >= ?TIMING_SAMPLESIZE ->
log_timings(put, Timings),
{no_timing, leveled_rand:uniform(2 * ?TIMING_SAMPLECOUNTDOWN)};
_SC ->
{Timings, 0}
end;
update_statetimings(get, Timings, 0) ->
case Timings#get_timings.sample_count of
SC when SC >= ?TIMING_SAMPLESIZE ->
log_timings(get, Timings),
{no_timing, leveled_rand:uniform(2 * ?TIMING_SAMPLECOUNTDOWN)};
_SC ->
{Timings, 0}
end;
update_statetimings(fold, Timings, 0) ->
case Timings#fold_timings.sample_count of
SC when SC >= (?TIMING_SAMPLESIZE div 10) ->
log_timings(fold, Timings),
{no_timing,
leveled_rand:uniform(2 * (?TIMING_SAMPLECOUNTDOWN div 10))};
_SC ->
{Timings, 0}
end;
update_statetimings(_, no_timing, N) ->
{no_timing, N - 1}.
log_timings(head, Timings) ->
leveled_log:log("B0018",
[Timings#head_timings.sample_count,
Timings#head_timings.pcl_time,
Timings#head_timings.buildhead_time]);
log_timings(put, Timings) ->
leveled_log:log("B0015", [Timings#put_timings.sample_count,
Timings#put_timings.mem_time,
Timings#put_timings.ink_time,
Timings#put_timings.total_size]);
log_timings(get, Timings) ->
leveled_log:log("B0016", [Timings#get_timings.sample_count,
Timings#get_timings.head_time,
Timings#get_timings.body_time,
Timings#get_timings.fetch_count]);
log_timings(fold, Timings) ->
leveled_log:log("B0017", [Timings#fold_timings.sample_count,
Timings#fold_timings.setup_time]).
update_timings(_SW, _Stage, no_timing) ->
{no_timing, no_timing};
update_timings(SW, {head, Stage}, Timings) ->
Timer = timer:now_diff(os:timestamp(), SW),
Timings0 =
case Stage of
pcl ->
PCT = Timings#head_timings.pcl_time + Timer,
Timings#head_timings{pcl_time = PCT};
rsp ->
BHT = Timings#head_timings.buildhead_time + Timer,
CNT = Timings#head_timings.sample_count + 1,
Timings#head_timings{buildhead_time = BHT, sample_count = CNT}
end,
{os:timestamp(), Timings0};
update_timings(SW, {put, Stage}, Timings) ->
Timer = timer:now_diff(os:timestamp(), SW),
Timings0 =
case Stage of
{inker, ObjectSize} ->
INT = Timings#put_timings.ink_time + Timer,
TSZ = Timings#put_timings.total_size + ObjectSize,
Timings#put_timings{ink_time = INT, total_size = TSZ};
mem ->
PCT = Timings#put_timings.mem_time + Timer,
CNT = Timings#put_timings.sample_count + 1,
Timings#put_timings{mem_time = PCT, sample_count = CNT}
end,
{os:timestamp(), Timings0};
update_timings(SW, {get, head}, Timings) ->
Timer = timer:now_diff(os:timestamp(), SW),
GHT = Timings#get_timings.head_time + Timer,
CNT = Timings#get_timings.sample_count + 1,
Timings0 = Timings#get_timings{head_time = GHT, sample_count = CNT},
{os:timestamp(), Timings0};
update_timings(SW, {get, body}, Timings) ->
Timer = timer:now_diff(os:timestamp(), SW),
GBT = Timings#get_timings.body_time + Timer,
FCNT = Timings#get_timings.fetch_count + 1,
Timings0 = Timings#get_timings{body_time = GBT, fetch_count = FCNT},
{no_timing, Timings0};
update_timings(SW, {fold, setup}, Timings) ->
Timer = timer:now_diff(os:timestamp(), SW),
FST = Timings#fold_timings.setup_time + Timer,
CNT = Timings#fold_timings.sample_count + 1,
Timings0 = Timings#fold_timings{setup_time = FST, sample_count = CNT},
{no_timing, Timings0}.
-spec maybelog_cacheratio(cache_ratio(), boolean()) -> cache_ratio().
maybelog_cacheratio({?CACHE_LOGPOINT, CC, HC}, false) ->
leveled_log:log("B0021", [?CACHE_LOGPOINT, CC, HC]),
{0, 0, 0};
maybelog_cacheratio(CR, _IsSnap) ->
CR.
%%%============================================================================
%%% Test
%%%============================================================================
-ifdef(TEST).
reset_filestructure() ->
RootPath = "test/test_area",
leveled_inker:clean_testdir(RootPath ++ "/" ++ ?JOURNAL_FP),
leveled_penciller:clean_testdir(RootPath ++ "/" ++ ?LEDGER_FP),
RootPath.
generate_multiple_objects(Count, KeyNumber) ->
generate_multiple_objects(Count, KeyNumber, []).
generate_multiple_objects(0, _KeyNumber, ObjL) ->
ObjL;
generate_multiple_objects(Count, KeyNumber, ObjL) ->
Key = "Key" ++ integer_to_list(KeyNumber),
Value = leveled_rand:rand_bytes(256),
IndexSpec = [{add, "idx1_bin", "f" ++ integer_to_list(KeyNumber rem 10)}],
generate_multiple_objects(Count - 1,
KeyNumber + 1,
ObjL ++ [{Key, Value, IndexSpec}]).
ttl_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath}]),
ObjL1 = generate_multiple_objects(100, 1),
% Put in all the objects with a TTL in the future
Future = leveled_util:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
lists:foreach(fun({K, V, _S}) ->
{ok, V} = book_get(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL1),
lists:foreach(fun({K, _V, _S}) ->
{ok, _} = book_head(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL1),
ObjL2 = generate_multiple_objects(100, 101),
Past = leveled_util:integer_now() - 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Past) end,
ObjL2),
lists:foreach(fun({K, _V, _S}) ->
not_found = book_get(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL2),
lists:foreach(fun({K, _V, _S}) ->
not_found = book_head(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL2),
{async, BucketFolder} = book_returnfolder(Bookie1,
{bucket_stats, "Bucket"}),
{_Size, Count} = BucketFolder(),
?assertMatch(100, Count),
FoldKeysFun = fun(_B, Item, FKFAcc) -> FKFAcc ++ [Item] end,
{async,
IndexFolder} = book_returnfolder(Bookie1,
{index_query,
"Bucket",
{FoldKeysFun, []},
{"idx1_bin", "f8", "f9"},
{false, undefined}}),
KeyList = IndexFolder(),
?assertMatch(20, length(KeyList)),
{ok, Regex} = re:compile("f8"),
{async,
IndexFolderTR} = book_returnfolder(Bookie1,
{index_query,
"Bucket",
{FoldKeysFun, []},
{"idx1_bin", "f8", "f9"},
{true, Regex}}),
TermKeyList = IndexFolderTR(),
?assertMatch(10, length(TermKeyList)),
ok = book_close(Bookie1),
{ok, Bookie2} = book_start([{root_path, RootPath}]),
{async,
IndexFolderTR2} = book_returnfolder(Bookie2,
{index_query,
"Bucket",
{FoldKeysFun, []},
{"idx1_bin", "f7", "f9"},
{false, Regex}}),
KeyList2 = IndexFolderTR2(),
?assertMatch(10, length(KeyList2)),
lists:foreach(fun({K, _V, _S}) ->
not_found = book_get(Bookie2, "Bucket", K, ?STD_TAG)
end,
ObjL2),
lists:foreach(fun({K, _V, _S}) ->
not_found = book_head(Bookie2, "Bucket", K, ?STD_TAG)
end,
ObjL2),
ok = book_close(Bookie2),
reset_filestructure().
hashlist_query_test_() ->
{timeout, 60, fun hashlist_query_testto/0}.
hashlist_query_testto() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ObjL1 = generate_multiple_objects(1200, 1),
% Put in all the objects with a TTL in the future
Future = leveled_util:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
ObjL2 = generate_multiple_objects(20, 1201),
% Put in a few objects with a TTL in the past
Past = leveled_util:integer_now() - 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Past) end,
ObjL2),
% Scan the store for the Bucket, Keys and Hashes
{async, HTFolder} = book_returnfolder(Bookie1,
{hashlist_query,
?STD_TAG,
false}),
KeyHashList = HTFolder(),
lists:foreach(fun({B, _K, H}) ->
?assertMatch("Bucket", B),
?assertMatch(true, is_integer(H))
end,
KeyHashList),
?assertMatch(1200, length(KeyHashList)),
ok = book_close(Bookie1),
{ok, Bookie2} = book_start([{root_path, RootPath},
{max_journalsize, 200000},
{cache_size, 500}]),
{async, HTFolder2} = book_returnfolder(Bookie2,
{hashlist_query,
?STD_TAG,
false}),
L0 = length(KeyHashList),
HTR2 = HTFolder2(),
?assertMatch(L0, length(HTR2)),
?assertMatch(KeyHashList, HTR2),
ok = book_close(Bookie2),
reset_filestructure().
hashlist_query_withjournalcheck_test_() ->
{timeout, 60, fun hashlist_query_withjournalcheck_testto/0}.
hashlist_query_withjournalcheck_testto() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ObjL1 = generate_multiple_objects(800, 1),
% Put in all the objects with a TTL in the future
Future = leveled_util:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
{async, HTFolder1} = book_returnfolder(Bookie1,
{hashlist_query,
?STD_TAG,
false}),
KeyHashList = HTFolder1(),
{async, HTFolder2} = book_returnfolder(Bookie1,
{hashlist_query,
?STD_TAG,
true}),
?assertMatch(KeyHashList, HTFolder2()),
ok = book_close(Bookie1),
reset_filestructure().
foldobjects_vs_hashtree_test_() ->
{timeout, 60, fun foldobjects_vs_hashtree_testto/0}.
foldobjects_vs_hashtree_testto() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ObjL1 = generate_multiple_objects(800, 1),
% Put in all the objects with a TTL in the future
Future = leveled_util:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"Bucket", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
{async, HTFolder1} = book_returnfolder(Bookie1,
{hashlist_query,
?STD_TAG,
false}),
KeyHashList1 = lists:usort(HTFolder1()),
FoldObjectsFun = fun(B, K, V, Acc) ->
[{B, K, erlang:phash2(term_to_binary(V))}|Acc] end,
{async, HTFolder2} = book_returnfolder(Bookie1,
{foldobjects_allkeys,
?STD_TAG,
FoldObjectsFun,
true}),
KeyHashList2 = HTFolder2(),
?assertMatch(KeyHashList1, lists:usort(KeyHashList2)),
FoldHeadsFun =
fun(B, K, ProxyV, Acc) ->
{proxy_object,
_MDBin,
_Size,
{FetchFun, Clone, JK}} = binary_to_term(ProxyV),
V = FetchFun(Clone, JK),
[{B, K, erlang:phash2(term_to_binary(V))}|Acc]
end,
{async, HTFolder3} =
book_returnfolder(Bookie1,
{foldheads_allkeys,
?STD_TAG,
FoldHeadsFun,
true, true, false, false, false}),
KeyHashList3 = HTFolder3(),
?assertMatch(KeyHashList1, lists:usort(KeyHashList3)),
FoldHeadsFun2 =
fun(B, K, ProxyV, Acc) ->
{proxy_object,
MD,
_Size1,
_Fetcher} = binary_to_term(ProxyV),
{Hash, _Size0, _UserDefinedMD} = MD,
[{B, K, Hash}|Acc]
end,
{async, HTFolder4} =
book_returnfolder(Bookie1,
{foldheads_allkeys,
?STD_TAG,
FoldHeadsFun2,
false, false, false, false, false}),
KeyHashList4 = HTFolder4(),
?assertMatch(KeyHashList1, lists:usort(KeyHashList4)),
ok = book_close(Bookie1),
reset_filestructure().
foldobjects_vs_foldheads_bybucket_test_() ->
{timeout, 60, fun foldobjects_vs_foldheads_bybucket_testto/0}.
foldobjects_vs_foldheads_bybucket_testto() ->
folder_cache_test(10),
folder_cache_test(100),
folder_cache_test(300),
folder_cache_test(1000).
folder_cache_test(CacheSize) ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, CacheSize}]),
_ = book_returnactors(Bookie1),
ObjL1 = generate_multiple_objects(400, 1),
ObjL2 = generate_multiple_objects(400, 1),
% Put in all the objects with a TTL in the future
Future = leveled_util:integer_now() + 300,
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"BucketA", K, V, S,
?STD_TAG,
Future) end,
ObjL1),
lists:foreach(fun({K, V, S}) -> ok = book_tempput(Bookie1,
"BucketB", K, V, S,
?STD_TAG,
Future) end,
ObjL2),
FoldObjectsFun = fun(B, K, V, Acc) ->
[{B, K, erlang:phash2(term_to_binary(V))}|Acc] end,
{async, HTFolder1A} =
book_returnfolder(Bookie1,
{foldobjects_bybucket,
?STD_TAG,
"BucketA",
all,
FoldObjectsFun,
false}),
KeyHashList1A = HTFolder1A(),
{async, HTFolder1B} =
book_returnfolder(Bookie1,
{foldobjects_bybucket,
?STD_TAG,
"BucketB",
all,
FoldObjectsFun,
true}),
KeyHashList1B = HTFolder1B(),
?assertMatch(false,
lists:usort(KeyHashList1A) == lists:usort(KeyHashList1B)),
FoldHeadsFun =
fun(B, K, ProxyV, Acc) ->
{proxy_object,
_MDBin,
_Size,
{FetchFun, Clone, JK}} = binary_to_term(ProxyV),
V = FetchFun(Clone, JK),
[{B, K, erlang:phash2(term_to_binary(V))}|Acc]
end,
{async, HTFolder2A} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketA",
all,
FoldHeadsFun,
true, true,
false, false, false}),
KeyHashList2A = HTFolder2A(),
{async, HTFolder2B} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
all,
FoldHeadsFun,
true, false,
false, false, false}),
KeyHashList2B = HTFolder2B(),
?assertMatch(true,
lists:usort(KeyHashList1A) == lists:usort(KeyHashList2A)),
?assertMatch(true,
lists:usort(KeyHashList1B) == lists:usort(KeyHashList2B)),
{async, HTFolder2C} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
{"Key", <<"$all">>},
FoldHeadsFun,
true, false,
false, false, false}),
KeyHashList2C = HTFolder2C(),
{async, HTFolder2D} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
{"Key", "Keyzzzzz"},
FoldHeadsFun,
true, true,
false, false, false}),
KeyHashList2D = HTFolder2D(),
?assertMatch(true,
lists:usort(KeyHashList2B) == lists:usort(KeyHashList2C)),
?assertMatch(true,
lists:usort(KeyHashList2B) == lists:usort(KeyHashList2D)),
CheckSplitQueryFun =
fun(SplitInt) ->
io:format("Testing SplitInt ~w~n", [SplitInt]),
SplitIntEnd = "Key" ++ integer_to_list(SplitInt) ++ "|",
SplitIntStart = "Key" ++ integer_to_list(SplitInt + 1),
{async, HTFolder2E} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
{"Key", SplitIntEnd},
FoldHeadsFun,
true, false,
false, false, false}),
KeyHashList2E = HTFolder2E(),
{async, HTFolder2F} =
book_returnfolder(Bookie1,
{foldheads_bybucket,
?STD_TAG,
"BucketB",
{SplitIntStart, "Key|"},
FoldHeadsFun,
true, false,
false, false, false}),
KeyHashList2F = HTFolder2F(),
?assertMatch(true, length(KeyHashList2E) > 0),
?assertMatch(true, length(KeyHashList2F) > 0),
io:format("Length of 2B ~w 2E ~w 2F ~w~n",
[length(KeyHashList2B),
length(KeyHashList2E),
length(KeyHashList2F)]),
CompareL = lists:usort(KeyHashList2E ++ KeyHashList2F),
?assertMatch(true, lists:usort(KeyHashList2B) == CompareL)
end,
lists:foreach(CheckSplitQueryFun, [1, 4, 8, 300, 100, 400, 200, 600]),
ok = book_close(Bookie1),
reset_filestructure().
small_cachesize_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 1}]),
ok = leveled_bookie:book_close(Bookie1).
is_empty_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
% Put in an object with a TTL in the future
Future = leveled_util:integer_now() + 300,
?assertMatch(true, leveled_bookie:book_isempty(Bookie1, ?STD_TAG)),
ok = book_tempput(Bookie1,
<<"B">>, <<"K">>, {value, <<"V">>}, [],
?STD_TAG, Future),
?assertMatch(false, leveled_bookie:book_isempty(Bookie1, ?STD_TAG)),
?assertMatch(true, leveled_bookie:book_isempty(Bookie1, ?RIAK_TAG)),
ok = leveled_bookie:book_close(Bookie1).
is_empty_headonly_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500},
{head_only, no_lookup}]),
?assertMatch(true, book_isempty(Bookie1, ?HEAD_TAG)),
ObjSpecs =
[{add, <<"B1">>, <<"K1">>, <<1:8/integer>>, 100},
{remove, <<"B1">>, <<"K1">>, <<0:8/integer>>, null}],
ok = book_mput(Bookie1, ObjSpecs),
?assertMatch(false, book_isempty(Bookie1, ?HEAD_TAG)),
ok = book_close(Bookie1).
undefined_rootpath_test() ->
Opts = [{max_journalsize, 1000000}, {cache_size, 500}],
R = gen_server:start(?MODULE, [set_defaults(Opts)], []),
?assertMatch({error, no_root_path}, R).
foldkeys_headonly_test() ->
foldkeys_headonly_tester(5000, 25, "BucketStr"),
foldkeys_headonly_tester(2000, 25, <<"B0">>).
foldkeys_headonly_tester(ObjectCount, BlockSize, BStr) ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500},
{head_only, no_lookup}]),
GenObjSpecFun =
fun(I) ->
Key = I rem 6,
{add, BStr, <<Key:8/integer>>, integer_to_list(I), I}
end,
ObjSpecs = lists:map(GenObjSpecFun, lists:seq(1, ObjectCount)),
ObjSpecBlocks =
lists:map(fun(I) ->
lists:sublist(ObjSpecs, I * BlockSize + 1, BlockSize)
end,
lists:seq(0, ObjectCount div BlockSize - 1)),
lists:map(fun(Block) -> book_mput(Bookie1, Block) end, ObjSpecBlocks),
?assertMatch(false, book_isempty(Bookie1, ?HEAD_TAG)),
FolderT =
{keylist,
?HEAD_TAG, BStr,
{fun(_B, {K, SK}, Acc) -> [{K, SK}|Acc] end, []}
},
{async, Folder1} = book_returnfolder(Bookie1, FolderT),
Key_SKL1 = lists:reverse(Folder1()),
Key_SKL_Compare =
lists:usort(lists:map(fun({add, _B, K, SK, _V}) -> {K, SK} end, ObjSpecs)),
?assertMatch(Key_SKL_Compare, Key_SKL1),
ok = book_close(Bookie1),
{ok, Bookie2} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500},
{head_only, no_lookup}]),
{async, Folder2} = book_returnfolder(Bookie2, FolderT),
Key_SKL2 = lists:reverse(Folder2()),
?assertMatch(Key_SKL_Compare, Key_SKL2),
ok = book_close(Bookie2).
is_empty_stringkey_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
?assertMatch(true, book_isempty(Bookie1, ?STD_TAG)),
Past = leveled_util:integer_now() - 300,
?assertMatch(true, leveled_bookie:book_isempty(Bookie1, ?STD_TAG)),
ok = book_tempput(Bookie1,
"B", "K", {value, <<"V">>}, [],
?STD_TAG, Past),
ok = book_put(Bookie1,
"B", "K0", {value, <<"V">>}, [],
?STD_TAG),
?assertMatch(false, book_isempty(Bookie1, ?STD_TAG)),
ok = book_close(Bookie1).
scan_table_test() ->
K1 = leveled_codec:to_ledgerkey(<<"B1">>,
<<"K1">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AA1">>),
K2 = leveled_codec:to_ledgerkey(<<"B1">>,
<<"K2">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AA1">>),
K3 = leveled_codec:to_ledgerkey(<<"B1">>,
<<"K3">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AB1">>),
K4 = leveled_codec:to_ledgerkey(<<"B1">>,
<<"K4">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AA2">>),
K5 = leveled_codec:to_ledgerkey(<<"B2">>,
<<"K5">>,
?IDX_TAG,
<<"F1-bin">>,
<<"AA2">>),
Tab0 = ets:new(mem, [ordered_set]),
SK_A0 = leveled_codec:to_ledgerkey(<<"B1">>,
null,
?IDX_TAG,
<<"F1-bin">>,
<<"AA0">>),
EK_A9 = leveled_codec:to_ledgerkey(<<"B1">>,
null,
?IDX_TAG,
<<"F1-bin">>,
<<"AA9">>),
Empty = {[], infinity, 0},
?assertMatch(Empty,
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K1, {1, active, no_lookup, null}}]),
?assertMatch({[{K1, _}], 1, 1},
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K2, {2, active, no_lookup, null}}]),
?assertMatch({[{K1, _}, {K2, _}], 1, 2},
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K3, {3, active, no_lookup, null}}]),
?assertMatch({[{K1, _}, {K2, _}], 1, 2},
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K4, {4, active, no_lookup, null}}]),
?assertMatch({[{K1, _}, {K2, _}, {K4, _}], 1, 4},
scan_table(Tab0, SK_A0, EK_A9)),
ets:insert(Tab0, [{K5, {5, active, no_lookup, null}}]),
?assertMatch({[{K1, _}, {K2, _}, {K4, _}], 1, 4},
scan_table(Tab0, SK_A0, EK_A9)).
longrunning_test() ->
SW = os:timestamp(),
timer:sleep(?LONG_RUNNING div 1000 + 100),
ok = maybe_longrunning(SW, put).
coverage_cheat_test() ->
{noreply, _State0} = handle_info(timeout, #state{}),
{ok, _State1} = code_change(null, #state{}, null).
erase_journal_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 50000},
{cache_size, 100}]),
ObjL1 = generate_multiple_objects(500, 1),
% Put in all the objects with a TTL in the future
lists:foreach(fun({K, V, S}) -> ok = book_put(Bookie1,
"Bucket", K, V, S,
?STD_TAG) end,
ObjL1),
lists:foreach(fun({K, V, _S}) ->
{ok, V} = book_get(Bookie1, "Bucket", K, ?STD_TAG)
end,
ObjL1),
CheckHeadFun =
fun(Book) ->
fun({K, _V, _S}, Acc) ->
case book_head(Book, "Bucket", K, ?STD_TAG) of
{ok, _Head} -> Acc;
not_found -> Acc + 1
end
end
end,
HeadsNotFound1 = lists:foldl(CheckHeadFun(Bookie1), 0, ObjL1),
?assertMatch(0, HeadsNotFound1),
ok = book_close(Bookie1),
io:format("Bookie closed - clearing Journal~n"),
leveled_inker:clean_testdir(RootPath ++ "/" ++ ?JOURNAL_FP),
{ok, Bookie2} = book_start([{root_path, RootPath},
{max_journalsize, 5000},
{cache_size, 100}]),
HeadsNotFound2 = lists:foldl(CheckHeadFun(Bookie2), 0, ObjL1),
?assertMatch(500, HeadsNotFound2),
ok = book_destroy(Bookie2).
sqnorder_fold_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ok = book_put(Bookie1,
<<"B">>, <<"K1">>, {value, <<"V1">>}, [],
?STD_TAG),
ok = book_put(Bookie1,
<<"B">>, <<"K2">>, {value, <<"V2">>}, [],
?STD_TAG),
FoldObjectsFun = fun(B, K, V, Acc) -> Acc ++ [{B, K, V}] end,
{async, ObjFPre} =
book_objectfold(Bookie1,
?STD_TAG, {FoldObjectsFun, []}, true, sqn_order),
{async, ObjFPost} =
book_objectfold(Bookie1,
?STD_TAG, {FoldObjectsFun, []}, false, sqn_order),
ok = book_put(Bookie1,
<<"B">>, <<"K3">>, {value, <<"V3">>}, [],
?STD_TAG),
ObjLPre = ObjFPre(),
?assertMatch([{<<"B">>, <<"K1">>, {value, <<"V1">>}},
{<<"B">>, <<"K2">>, {value, <<"V2">>}}], ObjLPre),
ObjLPost = ObjFPost(),
?assertMatch([{<<"B">>, <<"K1">>, {value, <<"V1">>}},
{<<"B">>, <<"K2">>, {value, <<"V2">>}},
{<<"B">>, <<"K3">>, {value, <<"V3">>}}], ObjLPost),
ok = book_destroy(Bookie1).
sqnorder_mutatefold_test() ->
RootPath = reset_filestructure(),
{ok, Bookie1} = book_start([{root_path, RootPath},
{max_journalsize, 1000000},
{cache_size, 500}]),
ok = book_put(Bookie1,
<<"B">>, <<"K1">>, {value, <<"V1">>}, [],
?STD_TAG),
ok = book_put(Bookie1,
<<"B">>, <<"K1">>, {value, <<"V2">>}, [],
?STD_TAG),
FoldObjectsFun = fun(B, K, V, Acc) -> Acc ++ [{B, K, V}] end,
{async, ObjFPre} =
book_objectfold(Bookie1,
?STD_TAG, {FoldObjectsFun, []}, true, sqn_order),
{async, ObjFPost} =
book_objectfold(Bookie1,
?STD_TAG, {FoldObjectsFun, []}, false, sqn_order),
ok = book_put(Bookie1,
<<"B">>, <<"K1">>, {value, <<"V3">>}, [],
?STD_TAG),
ObjLPre = ObjFPre(),
?assertMatch([{<<"B">>, <<"K1">>, {value, <<"V2">>}}], ObjLPre),
ObjLPost = ObjFPost(),
?assertMatch([{<<"B">>, <<"K1">>, {value, <<"V3">>}}], ObjLPost),
ok = book_destroy(Bookie1).
search_test() ->
?assertMatch({value, 5}, search(fun(X) -> X == 5 end, lists:seq(1, 10))),
?assertMatch(false, search(fun(X) -> X == 55 end, lists:seq(1, 10))).
check_notfound_test() ->
ProbablyFun = fun() -> probably end,
MissingFun = fun() -> missing end,
MinFreq = lists:foldl(fun(_I, Freq) ->
{false, Freq0} =
check_notfound(Freq, ProbablyFun),
Freq0
end,
100,
lists:seq(1, 5000)),
% 5000 as needs to be a lot as doesn't decrement
% when random interval is not hit
?assertMatch(?MIN_KEYCHECK_FREQUENCY, MinFreq),
?assertMatch({true, ?MAX_KEYCHECK_FREQUENCY},
check_notfound(?MAX_KEYCHECK_FREQUENCY, MissingFun)),
?assertMatch({false, 0}, check_notfound(0, MissingFun)).
-endif.