leveled/test/end_to_end/tictac_SUITE.erl
Martin Sumner 2b6281b2b5 Initial head_only features
Initial commit to add head_only mode to leveled.  This allows leveled to receive batches of object changes, but where those objects exist only in the Penciller's Ledger (once they have been persisted within the Ledger).

The aim is to reduce significantly the cost of compaction.  Also, the objects ar enot directly accessible (they can only be accessed through folds).  Again this makes life easier during merging in the LSM trees (as no bloom filters have to be created).
2018-02-15 16:14:46 +00:00

1239 lines
No EOL
49 KiB
Erlang

-module(tictac_SUITE).
-include_lib("common_test/include/ct.hrl").
-include("include/leveled.hrl").
-export([all/0]).
-export([
many_put_compare/1,
index_compare/1,
recent_aae_noaae/1,
recent_aae_allaae/1,
recent_aae_bucketaae/1,
recent_aae_expiry/1,
basic_headonly/1
]).
all() -> [
many_put_compare,
index_compare,
recent_aae_noaae,
recent_aae_allaae,
recent_aae_bucketaae,
recent_aae_expiry,
basic_headonly
].
-define(LMD_FORMAT, "~4..0w~2..0w~2..0w~2..0w~2..0w").
-define(V1_VERS, 1).
-define(MAGIC, 53). % riak_kv -> riak_object
many_put_compare(_Config) ->
TreeSize = small,
SegmentCount = 256 * 256,
% Test requires multiple different databases, so want to mount them all
% on individual file paths
RootPathA = testutil:reset_filestructure("testA"),
RootPathB = testutil:reset_filestructure("testB"),
RootPathC = testutil:reset_filestructure("testC"),
RootPathD = testutil:reset_filestructure("testD"),
% Start the first database, load a test object, close it, start it again
StartOpts1 = [{root_path, RootPathA},
{max_pencillercachesize, 16000},
{sync_strategy, riak_sync}],
{ok, Bookie1} = leveled_bookie:book_start(StartOpts1),
{B1, K1, V1, S1, MD} = {"Bucket",
"Key1.1.4567.4321",
"Value1",
[],
[{"MDK1", "MDV1"}]},
{TestObject, TestSpec} = testutil:generate_testobject(B1, K1, V1, S1, MD),
ok = testutil:book_riakput(Bookie1, TestObject, TestSpec),
testutil:check_forobject(Bookie1, TestObject),
ok = leveled_bookie:book_close(Bookie1),
StartOpts2 = [{root_path, RootPathA},
{max_journalsize, 500000000},
{max_pencillercachesize, 32000},
{sync_strategy, testutil:sync_strategy()}],
{ok, Bookie2} = leveled_bookie:book_start(StartOpts2),
testutil:check_forobject(Bookie2, TestObject),
% Generate 200K objects to be sued within the test, and load them into
% the first store (outputting the generated objects as a list of lists)
% to be used elsewhere
GenList = [2, 20002, 40002, 60002, 80002,
100002, 120002, 140002, 160002, 180002],
CLs = testutil:load_objects(20000,
GenList,
Bookie2,
TestObject,
fun testutil:generate_smallobjects/2,
20000),
% Start a new store, and load the same objects (except fot the original
% test object) into this store
StartOpts3 = [{root_path, RootPathB},
{max_journalsize, 200000000},
{max_pencillercachesize, 16000},
{sync_strategy, testutil:sync_strategy()}],
{ok, Bookie3} = leveled_bookie:book_start(StartOpts3),
lists:foreach(fun(ObjL) -> testutil:riakload(Bookie3, ObjL) end, CLs),
% Now run a tictac query against both stores to see the extent to which
% state between stores is consistent
TicTacQ = {tictactree_obj,
{o_rkv, "Bucket", null, null, true},
TreeSize,
fun(_B, _K) -> accumulate end},
{async, TreeAFolder} = leveled_bookie:book_returnfolder(Bookie2, TicTacQ),
{async, TreeBFolder} = leveled_bookie:book_returnfolder(Bookie3, TicTacQ),
SWA0 = os:timestamp(),
TreeA = TreeAFolder(),
io:format("Build tictac tree with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWA0)]),
SWB0 = os:timestamp(),
TreeB = TreeBFolder(),
io:format("Build tictac tree with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWB0)]),
SWC0 = os:timestamp(),
SegList0 = leveled_tictac:find_dirtyleaves(TreeA, TreeB),
io:format("Compare tictac trees with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWC0)]),
io:format("Tree comparison shows ~w different leaves~n",
[length(SegList0)]),
AltList =
leveled_tictac:find_dirtyleaves(TreeA,
leveled_tictac:new_tree(0, TreeSize)),
io:format("Tree comparison shows ~w altered leaves~n",
[length(AltList)]),
true = length(SegList0) == 1,
% only the test object should be different
true = length(AltList) > 10000,
% check there are a significant number of differences from empty
WrongPartitionTicTacQ = {tictactree_obj,
{o_rkv, "Bucket", null, null, false},
TreeSize,
fun(_B, _K) -> pass end},
{async, TreeAFolder_WP} =
leveled_bookie:book_returnfolder(Bookie2, WrongPartitionTicTacQ),
TreeAWP = TreeAFolder_WP(),
DoubleEmpty =
leveled_tictac:find_dirtyleaves(TreeAWP,
leveled_tictac:new_tree(0, TreeSize)),
true = length(DoubleEmpty) == 0,
% Now run the same query by putting the tree-building responsibility onto
% the fold_objects_fun
ExtractClockFun =
fun(Key, Value) ->
{proxy_object, HeadBin, _Size, _FetchFun} = binary_to_term(Value),
<<?MAGIC:8/integer, ?V1_VERS:8/integer, VclockLen:32/integer,
VclockBin:VclockLen/binary, _Rest/binary>> = HeadBin,
case is_binary(Key) of
true ->
{Key,
lists:sort(binary_to_term(VclockBin))};
false ->
{term_to_binary(Key),
lists:sort(binary_to_term(VclockBin))}
end
end,
FoldObjectsFun =
fun(_Bucket, Key, Value, Acc) ->
leveled_tictac:add_kv(Acc, Key, Value, ExtractClockFun)
end,
FoldQ0 = {foldheads_bybucket,
o_rkv,
"Bucket",
all,
{FoldObjectsFun, leveled_tictac:new_tree(0, TreeSize)},
false, true, false},
{async, TreeAObjFolder0} =
leveled_bookie:book_returnfolder(Bookie2, FoldQ0),
SWB0Obj = os:timestamp(),
TreeAObj0 = TreeAObjFolder0(),
io:format("Build tictac tree via object fold with no "++
"presence check and 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWB0Obj)]),
true = length(leveled_tictac:find_dirtyleaves(TreeA, TreeAObj0)) == 0,
FoldQ1 = {foldheads_bybucket,
o_rkv,
"Bucket",
all,
{FoldObjectsFun, leveled_tictac:new_tree(0, TreeSize)},
true, true, false},
{async, TreeAObjFolder1} =
leveled_bookie:book_returnfolder(Bookie2, FoldQ1),
SWB1Obj = os:timestamp(),
TreeAObj1 = TreeAObjFolder1(),
io:format("Build tictac tree via object fold with "++
"presence check and 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWB1Obj)]),
true = length(leveled_tictac:find_dirtyleaves(TreeA, TreeAObj1)) == 0,
% For an exportable comparison, want hash to be based on something not
% coupled to erlang language - so use exportable query
AltExtractFun =
fun(K, V) ->
{proxy_object, HeadBin, _Size, _FetchFun} = binary_to_term(V),
<<?MAGIC:8/integer, ?V1_VERS:8/integer, VclockLen:32/integer,
VclockBin:VclockLen/binary, _Rest/binary>> = HeadBin,
{term_to_binary(K), VclockBin}
end,
AltFoldObjectsFun =
fun(_Bucket, Key, Value, Acc) ->
leveled_tictac:add_kv(Acc, Key, Value, AltExtractFun)
end,
AltFoldQ0 = {foldheads_bybucket,
o_rkv,
"Bucket",
all,
{AltFoldObjectsFun, leveled_tictac:new_tree(0, TreeSize)},
false, true, false},
{async, TreeAAltObjFolder0} =
leveled_bookie:book_returnfolder(Bookie2, AltFoldQ0),
SWB2Obj = os:timestamp(),
TreeAAltObj = TreeAAltObjFolder0(),
io:format("Build tictac tree via object fold with no "++
"presence check and 200K objects and alt hash in ~w~n",
[timer:now_diff(os:timestamp(), SWB2Obj)]),
{async, TreeBAltObjFolder0} =
leveled_bookie:book_returnfolder(Bookie3, AltFoldQ0),
SWB3Obj = os:timestamp(),
TreeBAltObj = TreeBAltObjFolder0(),
io:format("Build tictac tree via object fold with no "++
"presence check and 200K objects and alt hash in ~w~n",
[timer:now_diff(os:timestamp(), SWB3Obj)]),
DL_ExportFold =
length(leveled_tictac:find_dirtyleaves(TreeBAltObj, TreeAAltObj)),
io:format("Found dirty leaves with exportable comparison of ~w~n",
[DL_ExportFold]),
true = DL_ExportFold == 1,
%% Finding differing keys
FoldKeysFun =
fun(SegListToFind) ->
fun(_B, K, Acc) ->
Seg = get_segment(K, SegmentCount),
case lists:member(Seg, SegListToFind) of
true ->
[K|Acc];
false ->
Acc
end
end
end,
SegQuery = {keylist, o_rkv, "Bucket", {FoldKeysFun(SegList0), []}},
{async, SegKeyFinder} =
leveled_bookie:book_returnfolder(Bookie2, SegQuery),
SWSKL0 = os:timestamp(),
SegKeyList = SegKeyFinder(),
io:format("Finding ~w keys in ~w dirty segments in ~w~n",
[length(SegKeyList),
length(SegList0),
timer:now_diff(os:timestamp(), SWSKL0)]),
true = length(SegKeyList) >= 1,
true = length(SegKeyList) < 10,
true = lists:member("Key1.1.4567.4321", SegKeyList),
% Now remove the object which represents the difference between these
% stores and confirm that the tictac trees will now match
testutil:book_riakdelete(Bookie2, B1, K1, []),
{async, TreeAFolder0} = leveled_bookie:book_returnfolder(Bookie2, TicTacQ),
SWA1 = os:timestamp(),
TreeA0 = TreeAFolder0(),
io:format("Build tictac tree with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWA1)]),
SegList1 = leveled_tictac:find_dirtyleaves(TreeA0, TreeB),
io:format("Tree comparison following delete shows ~w different leaves~n",
[length(SegList1)]),
true = length(SegList1) == 0,
% Removed test object so tictac trees should match
ok = testutil:book_riakput(Bookie3, TestObject, TestSpec),
{async, TreeBFolder0} = leveled_bookie:book_returnfolder(Bookie3, TicTacQ),
SWB1 = os:timestamp(),
TreeB0 = TreeBFolder0(),
io:format("Build tictac tree with 200K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWB1)]),
SegList2 = leveled_tictac:find_dirtyleaves(TreeA0, TreeB0),
true = SegList2 == SegList0,
% There is an identical difference now the difference is on Bookie3 not
% Bookie 2 (compared to it being in Bookie2 not Bookie3)
ok = leveled_bookie:book_close(Bookie3),
% Replace Bookie 3 with two stores Bookie 4 and Bookie 5 where the ojects
% have been randomly split between the stores
StartOpts4 = [{root_path, RootPathC},
{max_journalsize, 200000000},
{max_pencillercachesize, 24000},
{sync_strategy, testutil:sync_strategy()}],
{ok, Bookie4} = leveled_bookie:book_start(StartOpts4),
StartOpts5 = [{root_path, RootPathD},
{max_journalsize, 200000000},
{max_pencillercachesize, 24000},
{sync_strategy, testutil:sync_strategy()}],
{ok, Bookie5} = leveled_bookie:book_start(StartOpts5),
SplitFun =
fun(Obj) ->
case erlang:phash2(Obj) rem 2 of
0 ->
true;
1 ->
false
end
end,
lists:foreach(fun(ObjL) ->
{ObjLA, ObjLB} = lists:partition(SplitFun, ObjL),
testutil:riakload(Bookie4, ObjLA),
testutil:riakload(Bookie5, ObjLB)
end,
CLs),
% query both the stores, then merge the trees - the result should be the
% same as the result from the tree created aginst the store with both
% partitions
{async, TreeC0Folder} = leveled_bookie:book_returnfolder(Bookie4, TicTacQ),
{async, TreeC1Folder} = leveled_bookie:book_returnfolder(Bookie5, TicTacQ),
SWD0 = os:timestamp(),
TreeC0 = TreeC0Folder(),
io:format("Build tictac tree with 100K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWD0)]),
SWD1 = os:timestamp(),
TreeC1 = TreeC1Folder(),
io:format("Build tictac tree with 100K objects in ~w~n",
[timer:now_diff(os:timestamp(), SWD1)]),
TreeC2 = leveled_tictac:merge_trees(TreeC0, TreeC1),
SegList3 = leveled_tictac:find_dirtyleaves(TreeC2, TreeB),
io:format("Tree comparison following delete shows ~w different leaves~n",
[length(SegList3)]),
true = length(SegList3) == 0,
ok = leveled_bookie:book_close(Bookie2),
ok = leveled_bookie:book_close(Bookie4),
ok = leveled_bookie:book_close(Bookie5).
index_compare(_Config) ->
TreeSize = xxsmall,
LS = 2000,
JS = 50000000,
SS = testutil:sync_strategy(),
SegmentCount = 64 * 64,
% Test requires multiple different databases, so want to mount them all
% on individual file paths
RootPathA = testutil:reset_filestructure("testA"),
RootPathB = testutil:reset_filestructure("testB"),
RootPathC = testutil:reset_filestructure("testC"),
RootPathD = testutil:reset_filestructure("testD"),
% Book1A to get all objects
{ok, Book1A} = leveled_bookie:book_start(RootPathA, LS, JS, SS),
% Book1B/C/D will have objects partitioned across it
{ok, Book1B} = leveled_bookie:book_start(RootPathB, LS, JS, SS),
{ok, Book1C} = leveled_bookie:book_start(RootPathC, LS, JS, SS),
{ok, Book1D} = leveled_bookie:book_start(RootPathD, LS, JS, SS),
% Generate nine lists of objects
BucketBin = list_to_binary("Bucket"),
GenMapFun =
fun(_X) ->
V = testutil:get_compressiblevalue(),
Indexes = testutil:get_randomindexes_generator(8),
testutil:generate_objects(10000, binary_uuid, [], V, Indexes)
end,
ObjLists = lists:map(GenMapFun, lists:seq(1, 9)),
% Load all nine lists into Book1A
lists:foreach(fun(ObjL) -> testutil:riakload(Book1A, ObjL) end,
ObjLists),
% Split nine lists across Book1B to Book1D, three object lists in each
lists:foreach(fun(ObjL) -> testutil:riakload(Book1B, ObjL) end,
lists:sublist(ObjLists, 1, 3)),
lists:foreach(fun(ObjL) -> testutil:riakload(Book1C, ObjL) end,
lists:sublist(ObjLists, 4, 3)),
lists:foreach(fun(ObjL) -> testutil:riakload(Book1D, ObjL) end,
lists:sublist(ObjLists, 7, 3)),
GetTicTacTreeFun =
fun(X, Bookie) ->
SW = os:timestamp(),
ST = "!",
ET = "|",
Q = {tictactree_idx,
{BucketBin, "idx" ++ integer_to_list(X) ++ "_bin", ST, ET},
TreeSize,
fun(_B, _K) -> accumulate end},
{async, Folder} = leveled_bookie:book_returnfolder(Bookie, Q),
R = Folder(),
io:format("TicTac Tree for index ~w took " ++
"~w microseconds~n",
[X, timer:now_diff(os:timestamp(), SW)]),
R
end,
% Get a TicTac tree representing one of the indexes in Bucket A
TicTacTree1_Full = GetTicTacTreeFun(1, Book1A),
TicTacTree1_P1 = GetTicTacTreeFun(1, Book1B),
TicTacTree1_P2 = GetTicTacTreeFun(1, Book1C),
TicTacTree1_P3 = GetTicTacTreeFun(1, Book1D),
% Merge the tree across the partitions
TicTacTree1_Joined = lists:foldl(fun leveled_tictac:merge_trees/2,
TicTacTree1_P1,
[TicTacTree1_P2, TicTacTree1_P3]),
% Go compare! Also check we're not comparing empty trees
DL1_0 = leveled_tictac:find_dirtyleaves(TicTacTree1_Full,
TicTacTree1_Joined),
EmptyTree = leveled_tictac:new_tree(empty, TreeSize),
DL1_1 = leveled_tictac:find_dirtyleaves(TicTacTree1_Full, EmptyTree),
true = DL1_0 == [],
true = length(DL1_1) > 100,
ok = leveled_bookie:book_close(Book1A),
ok = leveled_bookie:book_close(Book1B),
ok = leveled_bookie:book_close(Book1C),
ok = leveled_bookie:book_close(Book1D),
% Double chekc all is well still after a restart
% Book1A to get all objects
{ok, Book2A} = leveled_bookie:book_start(RootPathA, LS, JS, SS),
% Book1B/C/D will have objects partitioned across it
{ok, Book2B} = leveled_bookie:book_start(RootPathB, LS, JS, SS),
{ok, Book2C} = leveled_bookie:book_start(RootPathC, LS, JS, SS),
{ok, Book2D} = leveled_bookie:book_start(RootPathD, LS, JS, SS),
% Get a TicTac tree representing one of the indexes in Bucket A
TicTacTree2_Full = GetTicTacTreeFun(2, Book2A),
TicTacTree2_P1 = GetTicTacTreeFun(2, Book2B),
TicTacTree2_P2 = GetTicTacTreeFun(2, Book2C),
TicTacTree2_P3 = GetTicTacTreeFun(2, Book2D),
% Merge the tree across the partitions
TicTacTree2_Joined = lists:foldl(fun leveled_tictac:merge_trees/2,
TicTacTree2_P1,
[TicTacTree2_P2, TicTacTree2_P3]),
% Go compare! Also check we're not comparing empty trees
DL2_0 = leveled_tictac:find_dirtyleaves(TicTacTree2_Full,
TicTacTree2_Joined),
EmptyTree = leveled_tictac:new_tree(empty, TreeSize),
DL2_1 = leveled_tictac:find_dirtyleaves(TicTacTree2_Full, EmptyTree),
true = DL2_0 == [],
true = length(DL2_1) > 100,
IdxSpc = {add, "idx2_bin", "zz999"},
{TestObj, TestSpc} = testutil:generate_testobject(BucketBin,
term_to_binary("K9.Z"),
"Value1",
[IdxSpc],
[{"MDK1", "MDV1"}]),
ok = testutil:book_riakput(Book2C, TestObj, TestSpc),
testutil:check_forobject(Book2C, TestObj),
TicTacTree3_Full = GetTicTacTreeFun(2, Book2A),
TicTacTree3_P1 = GetTicTacTreeFun(2, Book2B),
TicTacTree3_P2 = GetTicTacTreeFun(2, Book2C),
TicTacTree3_P3 = GetTicTacTreeFun(2, Book2D),
% Merge the tree across the partitions
TicTacTree3_Joined = lists:foldl(fun leveled_tictac:merge_trees/2,
TicTacTree3_P1,
[TicTacTree3_P2, TicTacTree3_P3]),
% Find all keys index, and then just the last key
IdxQ1 = {index_query,
BucketBin,
{fun testutil:foldkeysfun/3, []},
{"idx2_bin", "zz", "zz|"},
{true, undefined}},
{async, IdxFolder1} = leveled_bookie:book_returnfolder(Book2C, IdxQ1),
true = IdxFolder1() >= 1,
DL_3to2B = leveled_tictac:find_dirtyleaves(TicTacTree2_P1,
TicTacTree3_P1),
DL_3to2C = leveled_tictac:find_dirtyleaves(TicTacTree2_P2,
TicTacTree3_P2),
DL_3to2D = leveled_tictac:find_dirtyleaves(TicTacTree2_P3,
TicTacTree3_P3),
io:format("Individual tree comparison found dirty leaves of ~w ~w ~w~n",
[DL_3to2B, DL_3to2C, DL_3to2D]),
true = length(DL_3to2B) == 0,
true = length(DL_3to2C) == 1,
true = length(DL_3to2D) == 0,
% Go compare! Should find a difference in one leaf
DL3_0 = leveled_tictac:find_dirtyleaves(TicTacTree3_Full,
TicTacTree3_Joined),
io:format("Different leaves count ~w~n", [length(DL3_0)]),
true = length(DL3_0) == 1,
% Now we want to find for the {Term, Key} pairs that make up the segment
% diferrence (there should only be one)
%
% We want the database to filter on segment - so this doesn't have the
% overheads of key listing
FoldKeysIndexQFun =
fun(_Bucket, {Term, Key}, Acc) ->
Seg = get_segment(Key, SegmentCount),
case lists:member(Seg, DL3_0) of
true ->
[{Term, Key}|Acc];
false ->
Acc
end
end,
MismatchQ = {index_query,
BucketBin,
{FoldKeysIndexQFun, []},
{"idx2_bin", "!", "|"},
{true, undefined}},
{async, MMFldr_2A} = leveled_bookie:book_returnfolder(Book2A, MismatchQ),
{async, MMFldr_2B} = leveled_bookie:book_returnfolder(Book2B, MismatchQ),
{async, MMFldr_2C} = leveled_bookie:book_returnfolder(Book2C, MismatchQ),
{async, MMFldr_2D} = leveled_bookie:book_returnfolder(Book2D, MismatchQ),
SWSS = os:timestamp(),
SL_Joined = MMFldr_2B() ++ MMFldr_2C() ++ MMFldr_2D(),
SL_Full = MMFldr_2A(),
io:format("Segment search across both clusters took ~w~n",
[timer:now_diff(os:timestamp(), SWSS)]),
io:format("Joined SegList ~w~n", [SL_Joined]),
io:format("Full SegList ~w~n", [SL_Full]),
Diffs = lists:subtract(SL_Full, SL_Joined)
++ lists:subtract(SL_Joined, SL_Full),
io:format("Differences between lists ~w~n", [Diffs]),
% The actual difference is discovered
true = lists:member({"zz999", term_to_binary("K9.Z")}, Diffs),
% Without discovering too many others
true = length(Diffs) < 20,
ok = leveled_bookie:book_close(Book2A),
ok = leveled_bookie:book_close(Book2B),
ok = leveled_bookie:book_close(Book2C),
ok = leveled_bookie:book_close(Book2D).
recent_aae_noaae(_Config) ->
% Starts databases with recent_aae tables, and attempt to query to fetch
% recent aae trees returns empty trees as no index entries are found.
TreeSize = small,
% SegmentCount = 256 * 256,
UnitMins = 2,
% Test requires multiple different databases, so want to mount them all
% on individual file paths
RootPathA = testutil:reset_filestructure("testA"),
RootPathB = testutil:reset_filestructure("testB"),
RootPathC = testutil:reset_filestructure("testC"),
RootPathD = testutil:reset_filestructure("testD"),
StartOptsA = aae_startopts(RootPathA, false),
StartOptsB = aae_startopts(RootPathB, false),
StartOptsC = aae_startopts(RootPathC, false),
StartOptsD = aae_startopts(RootPathD, false),
% Book1A to get all objects
{ok, Book1A} = leveled_bookie:book_start(StartOptsA),
% Book1B/C/D will have objects partitioned across it
{ok, Book1B} = leveled_bookie:book_start(StartOptsB),
{ok, Book1C} = leveled_bookie:book_start(StartOptsC),
{ok, Book1D} = leveled_bookie:book_start(StartOptsD),
{B1, K1, V1, S1, MD} = {"Bucket",
"Key1.1.4567.4321",
"Value1",
[],
[{"MDK1", "MDV1"}]},
{TestObject, TestSpec} = testutil:generate_testobject(B1, K1, V1, S1, MD),
SW_StartLoad = os:timestamp(),
ok = testutil:book_riakput(Book1A, TestObject, TestSpec),
ok = testutil:book_riakput(Book1B, TestObject, TestSpec),
testutil:check_forobject(Book1A, TestObject),
testutil:check_forobject(Book1B, TestObject),
{TicTacTreeJoined, TicTacTreeFull, EmptyTree, _LMDIndexes} =
load_and_check_recentaae(Book1A, Book1B, Book1C, Book1D,
SW_StartLoad, TreeSize, UnitMins,
false),
% Go compare! Also confirm we're not comparing empty trees
DL1_0 = leveled_tictac:find_dirtyleaves(TicTacTreeFull,
TicTacTreeJoined),
DL1_1 = leveled_tictac:find_dirtyleaves(TicTacTreeFull, EmptyTree),
true = DL1_0 == [],
true = length(DL1_1) == 0,
ok = leveled_bookie:book_close(Book1A),
ok = leveled_bookie:book_close(Book1B),
ok = leveled_bookie:book_close(Book1C),
ok = leveled_bookie:book_close(Book1D).
recent_aae_allaae(_Config) ->
% Leveled is started in blacklisted mode with no buckets blacklisted.
%
% A number of changes are then loaded into a store, and also partitioned
% across a separate set of three stores. A merge tree is returned from
% both the single store and the partitioned store, and proven to compare
% the same.
%
% A single change is then made, but into one half of the system only. The
% aae index is then re-queried and it is verified that a signle segment
% difference is found.
%
% The segment Id found is then used in a query to find the Keys that make
% up that segment, and the delta discovered should be just that one key
% which was known to have been changed
TreeSize = small,
% SegmentCount = 256 * 256,
UnitMins = 2,
AAE = {blacklist, [], 60, UnitMins},
% Test requires multiple different databases, so want to mount them all
% on individual file paths
RootPathA = testutil:reset_filestructure("testA"),
RootPathB = testutil:reset_filestructure("testB"),
RootPathC = testutil:reset_filestructure("testC"),
RootPathD = testutil:reset_filestructure("testD"),
StartOptsA = aae_startopts(RootPathA, AAE),
StartOptsB = aae_startopts(RootPathB, AAE),
StartOptsC = aae_startopts(RootPathC, AAE),
StartOptsD = aae_startopts(RootPathD, AAE),
% Book1A to get all objects
{ok, Book1A} = leveled_bookie:book_start(StartOptsA),
% Book1B/C/D will have objects partitioned across it
{ok, Book1B} = leveled_bookie:book_start(StartOptsB),
{ok, Book1C} = leveled_bookie:book_start(StartOptsC),
{ok, Book1D} = leveled_bookie:book_start(StartOptsD),
{B1, K1, V1, S1, MD} = {"Bucket",
"Key1.1.4567.4321",
"Value1",
[],
[{"MDK1", "MDV1"}]},
{TestObject, TestSpec} = testutil:generate_testobject(B1, K1, V1, S1, MD),
SW_StartLoad = os:timestamp(),
ok = testutil:book_riakput(Book1A, TestObject, TestSpec),
ok = testutil:book_riakput(Book1B, TestObject, TestSpec),
testutil:check_forobject(Book1A, TestObject),
testutil:check_forobject(Book1B, TestObject),
{TicTacTreeJoined, TicTacTreeFull, EmptyTree, LMDIndexes} =
load_and_check_recentaae(Book1A, Book1B, Book1C, Book1D,
SW_StartLoad, TreeSize, UnitMins,
false),
% Go compare! Also confirm we're not comparing empty trees
DL1_0 = leveled_tictac:find_dirtyleaves(TicTacTreeFull,
TicTacTreeJoined),
DL1_1 = leveled_tictac:find_dirtyleaves(TicTacTreeFull, EmptyTree),
true = DL1_0 == [],
true = length(DL1_1) > 100,
ok = leveled_bookie:book_close(Book1A),
ok = leveled_bookie:book_close(Book1B),
ok = leveled_bookie:book_close(Book1C),
ok = leveled_bookie:book_close(Book1D),
% Book2A to get all objects
{ok, Book2A} = leveled_bookie:book_start(StartOptsA),
% Book2B/C/D will have objects partitioned across it
{ok, Book2B} = leveled_bookie:book_start(StartOptsB),
{ok, Book2C} = leveled_bookie:book_start(StartOptsC),
{ok, Book2D} = leveled_bookie:book_start(StartOptsD),
{TicTacTreeJoined, TicTacTreeFull, EmptyTree, LMDIndexes} =
load_and_check_recentaae(Book2A, Book2B, Book2C, Book2D,
SW_StartLoad, TreeSize, UnitMins,
LMDIndexes),
% Go compare! Also confirm we're not comparing empty trees
DL1_0 = leveled_tictac:find_dirtyleaves(TicTacTreeFull,
TicTacTreeJoined),
DL1_1 = leveled_tictac:find_dirtyleaves(TicTacTreeFull, EmptyTree),
true = DL1_0 == [],
true = length(DL1_1) > 100,
V2 = "Value2",
{TestObject2, TestSpec2} =
testutil:generate_testobject(B1, K1, V2, S1, MD),
New_startTS = os:timestamp(),
ok = testutil:book_riakput(Book2B, TestObject2, TestSpec2),
testutil:check_forobject(Book2B, TestObject2),
testutil:check_forobject(Book2A, TestObject),
New_endTS = os:timestamp(),
NewLMDIndexes = determine_lmd_indexes(New_startTS, New_endTS, UnitMins),
{TicTacTreeJoined2, TicTacTreeFull2, _EmptyTree, NewLMDIndexes} =
load_and_check_recentaae(Book2A, Book2B, Book2C, Book2D,
New_startTS, TreeSize, UnitMins,
NewLMDIndexes),
DL2_0 = leveled_tictac:find_dirtyleaves(TicTacTreeFull2,
TicTacTreeJoined2),
% DL2_1 = leveled_tictac:find_dirtyleaves(TicTacTreeFull, EmptyTree),
true = length(DL2_0) == 1,
[DirtySeg] = DL2_0,
TermPrefix = string:right(integer_to_list(DirtySeg), 8, $0),
LMDSegFolder =
fun(LMD, {Acc, Bookie}) ->
IdxLMD = list_to_binary("$aae." ++ LMD ++ "_bin"),
IdxQ1 =
{index_query,
<<"$all">>,
{fun testutil:foldkeysfun_returnbucket/3, []},
{IdxLMD,
list_to_binary(TermPrefix ++ "."),
list_to_binary(TermPrefix ++ "|")},
{true, undefined}},
{async, IdxFolder} =
leveled_bookie:book_returnfolder(Bookie, IdxQ1),
{Acc ++ IdxFolder(), Bookie}
end,
{KeysTerms2A, _} = lists:foldl(LMDSegFolder,
{[], Book2A},
lists:usort(LMDIndexes ++ NewLMDIndexes)),
true = length(KeysTerms2A) >= 1,
{KeysTerms2B, _} = lists:foldl(LMDSegFolder,
{[], Book2B},
lists:usort(LMDIndexes ++ NewLMDIndexes)),
{KeysTerms2C, _} = lists:foldl(LMDSegFolder,
{[], Book2C},
lists:usort(LMDIndexes ++ NewLMDIndexes)),
{KeysTerms2D, _} = lists:foldl(LMDSegFolder,
{[], Book2D},
lists:usort(LMDIndexes ++ NewLMDIndexes)),
KeysTerms2Joined = KeysTerms2B ++ KeysTerms2C ++ KeysTerms2D,
DeltaX = lists:subtract(KeysTerms2A, KeysTerms2Joined),
DeltaY = lists:subtract(KeysTerms2Joined, KeysTerms2A),
io:format("DeltaX ~w~n", [DeltaX]),
io:format("DeltaY ~w~n", [DeltaY]),
true = length(DeltaX) == 0, % This hasn't seen any extra changes
true = length(DeltaY) == 1, % This has seen an extra change
[{_, {B1, K1}}] = DeltaY,
ok = leveled_bookie:book_close(Book2A),
ok = leveled_bookie:book_close(Book2B),
ok = leveled_bookie:book_close(Book2C),
ok = leveled_bookie:book_close(Book2D).
recent_aae_bucketaae(_Config) ->
% Configure AAE to work only on a single whitelisted bucket
% Confirm that we can spot a delta in this bucket, but not
% in another bucket
TreeSize = small,
% SegmentCount = 256 * 256,
UnitMins = 2,
AAE = {whitelist, [<<"Bucket">>], 60, UnitMins},
% Test requires multiple different databases, so want to mount them all
% on individual file paths
RootPathA = testutil:reset_filestructure("testA"),
RootPathB = testutil:reset_filestructure("testB"),
RootPathC = testutil:reset_filestructure("testC"),
RootPathD = testutil:reset_filestructure("testD"),
StartOptsA = aae_startopts(RootPathA, AAE),
StartOptsB = aae_startopts(RootPathB, AAE),
StartOptsC = aae_startopts(RootPathC, AAE),
StartOptsD = aae_startopts(RootPathD, AAE),
% Book1A to get all objects
{ok, Book1A} = leveled_bookie:book_start(StartOptsA),
% Book1B/C/D will have objects partitioned across it
{ok, Book1B} = leveled_bookie:book_start(StartOptsB),
{ok, Book1C} = leveled_bookie:book_start(StartOptsC),
{ok, Book1D} = leveled_bookie:book_start(StartOptsD),
{B1, K1, V1, S1, MD} = {<<"Bucket">>,
"Key1.1.4567.4321",
"Value1",
[],
[{"MDK1", "MDV1"}]},
{TestObject, TestSpec} = testutil:generate_testobject(B1, K1, V1, S1, MD),
SW_StartLoad = os:timestamp(),
ok = testutil:book_riakput(Book1A, TestObject, TestSpec),
ok = testutil:book_riakput(Book1B, TestObject, TestSpec),
testutil:check_forobject(Book1A, TestObject),
testutil:check_forobject(Book1B, TestObject),
{TicTacTreeJoined, TicTacTreeFull, EmptyTree, LMDIndexes} =
load_and_check_recentaae(Book1A, Book1B, Book1C, Book1D,
SW_StartLoad, TreeSize, UnitMins,
false, <<"Bucket">>),
% Go compare! Also confirm we're not comparing empty trees
DL1_0 = leveled_tictac:find_dirtyleaves(TicTacTreeFull,
TicTacTreeJoined),
DL1_1 = leveled_tictac:find_dirtyleaves(TicTacTreeFull, EmptyTree),
true = DL1_0 == [],
true = length(DL1_1) > 100,
ok = leveled_bookie:book_close(Book1A),
ok = leveled_bookie:book_close(Book1B),
ok = leveled_bookie:book_close(Book1C),
ok = leveled_bookie:book_close(Book1D),
% Book2A to get all objects
{ok, Book2A} = leveled_bookie:book_start(StartOptsA),
% Book2B/C/D will have objects partitioned across it
{ok, Book2B} = leveled_bookie:book_start(StartOptsB),
{ok, Book2C} = leveled_bookie:book_start(StartOptsC),
{ok, Book2D} = leveled_bookie:book_start(StartOptsD),
% Change the value for a key in another bucket
% If we get trees for this period, no difference should be found
V2 = "Value2",
{TestObject2, TestSpec2} =
testutil:generate_testobject(<<"NotBucket">>, K1, V2, S1, MD),
New_startTS2 = os:timestamp(),
ok = testutil:book_riakput(Book2B, TestObject2, TestSpec2),
testutil:check_forobject(Book2B, TestObject2),
testutil:check_forobject(Book2A, TestObject),
New_endTS2 = os:timestamp(),
NewLMDIndexes2 = determine_lmd_indexes(New_startTS2, New_endTS2, UnitMins),
{TicTacTreeJoined2, TicTacTreeFull2, _EmptyTree, NewLMDIndexes2} =
load_and_check_recentaae(Book2A, Book2B, Book2C, Book2D,
New_startTS2, TreeSize, UnitMins,
NewLMDIndexes2, <<"Bucket">>),
DL2_0 = leveled_tictac:find_dirtyleaves(TicTacTreeFull2,
TicTacTreeJoined2),
true = length(DL2_0) == 0,
% Now create an object that is a change to an existing key in the
% monitored bucket. A differrence should be found
{TestObject3, TestSpec3} =
testutil:generate_testobject(B1, K1, V2, S1, MD),
New_startTS3 = os:timestamp(),
ok = testutil:book_riakput(Book2B, TestObject3, TestSpec3),
testutil:check_forobject(Book2B, TestObject3),
testutil:check_forobject(Book2A, TestObject),
New_endTS3 = os:timestamp(),
NewLMDIndexes3 = determine_lmd_indexes(New_startTS3, New_endTS3, UnitMins),
{TicTacTreeJoined3, TicTacTreeFull3, _EmptyTree, NewLMDIndexes3} =
load_and_check_recentaae(Book2A, Book2B, Book2C, Book2D,
New_startTS3, TreeSize, UnitMins,
NewLMDIndexes3, <<"Bucket">>),
DL3_0 = leveled_tictac:find_dirtyleaves(TicTacTreeFull3,
TicTacTreeJoined3),
% DL2_1 = leveled_tictac:find_dirtyleaves(TicTacTreeFull, EmptyTree),
true = length(DL3_0) == 1,
% Find the dirty segment, and use that to find the dirty key
%
% Note that unlike when monitoring $all, fold_keys can be used as there
% is no need to return the Bucket (as hte bucket is known)
[DirtySeg] = DL3_0,
TermPrefix = string:right(integer_to_list(DirtySeg), 8, $0),
LMDSegFolder =
fun(LMD, {Acc, Bookie}) ->
IdxLMD = list_to_binary("$aae." ++ LMD ++ "_bin"),
IdxQ1 =
{index_query,
<<"Bucket">>,
{fun testutil:foldkeysfun/3, []},
{IdxLMD,
list_to_binary(TermPrefix ++ "."),
list_to_binary(TermPrefix ++ "|")},
{true, undefined}},
{async, IdxFolder} =
leveled_bookie:book_returnfolder(Bookie, IdxQ1),
{Acc ++ IdxFolder(), Bookie}
end,
{KeysTerms2A, _} = lists:foldl(LMDSegFolder,
{[], Book2A},
lists:usort(LMDIndexes ++ NewLMDIndexes3)),
true = length(KeysTerms2A) >= 1,
{KeysTerms2B, _} = lists:foldl(LMDSegFolder,
{[], Book2B},
lists:usort(LMDIndexes ++ NewLMDIndexes3)),
{KeysTerms2C, _} = lists:foldl(LMDSegFolder,
{[], Book2C},
lists:usort(LMDIndexes ++ NewLMDIndexes3)),
{KeysTerms2D, _} = lists:foldl(LMDSegFolder,
{[], Book2D},
lists:usort(LMDIndexes ++ NewLMDIndexes3)),
KeysTerms2Joined = KeysTerms2B ++ KeysTerms2C ++ KeysTerms2D,
DeltaX = lists:subtract(KeysTerms2A, KeysTerms2Joined),
DeltaY = lists:subtract(KeysTerms2Joined, KeysTerms2A),
io:format("DeltaX ~w~n", [DeltaX]),
io:format("DeltaY ~w~n", [DeltaY]),
true = length(DeltaX) == 0, % This hasn't seen any extra changes
true = length(DeltaY) == 1, % This has seen an extra change
[{_, K1}] = DeltaY,
ok = leveled_bookie:book_close(Book2A),
ok = leveled_bookie:book_close(Book2B),
ok = leveled_bookie:book_close(Book2C),
ok = leveled_bookie:book_close(Book2D).
recent_aae_expiry(_Config) ->
% Proof that the index entries are indeed expired
TreeSize = small,
% SegmentCount = 256 * 256,
UnitMins = 1,
TotalMins = 2,
AAE = {blacklist, [], TotalMins, UnitMins},
% Test requires multiple different databases, so want to mount them all
% on individual file paths
RootPathA = testutil:reset_filestructure("testA"),
StartOptsA = aae_startopts(RootPathA, AAE),
% Book1A to get all objects
{ok, Book1A} = leveled_bookie:book_start(StartOptsA),
GenMapFun =
fun(_X) ->
V = testutil:get_compressiblevalue(),
Indexes = testutil:get_randomindexes_generator(8),
testutil:generate_objects(5000,
binary_uuid,
[],
V,
Indexes)
end,
ObjLists = lists:map(GenMapFun, lists:seq(1, 3)),
SW0 = os:timestamp(),
% Load all nine lists into Book1A
lists:foreach(fun(ObjL) -> testutil:riakload(Book1A, ObjL) end,
ObjLists),
SW1 = os:timestamp(),
% sleep for two minutes, so all index entries will have expired
GetTicTacTreeFun =
fun(Bookie) ->
get_tictactree_fun(Bookie, <<"$all">>, TreeSize)
end,
EmptyTree = leveled_tictac:new_tree(empty, TreeSize),
LMDIndexes = determine_lmd_indexes(SW0, SW1, UnitMins),
% Should get a non-empty answer to the query
TicTacTree1_Full =
lists:foldl(GetTicTacTreeFun(Book1A), EmptyTree, LMDIndexes),
DL3_0 = leveled_tictac:find_dirtyleaves(TicTacTree1_Full, EmptyTree),
io:format("Dirty leaves found before expiry ~w~n", [length(DL3_0)]),
true = length(DL3_0) > 0,
SecondsSinceLMD = timer:now_diff(os:timestamp(), SW0) div 1000000,
SecondsToExpiry = (TotalMins + UnitMins) * 60,
io:format("SecondsToExpiry ~w SecondsSinceLMD ~w~n",
[SecondsToExpiry, SecondsSinceLMD]),
io:format("LMDIndexes ~w~n", [LMDIndexes]),
case SecondsToExpiry > SecondsSinceLMD of
true ->
timer:sleep((1 + SecondsToExpiry - SecondsSinceLMD) * 1000);
false ->
timer:sleep(1000)
end,
% Should now get an empty answer - all entries have expired
TicTacTree2_Full =
lists:foldl(GetTicTacTreeFun(Book1A), EmptyTree, LMDIndexes),
DL4_0 = leveled_tictac:find_dirtyleaves(TicTacTree2_Full, EmptyTree),
io:format("Dirty leaves found after expiry ~w~n", [length(DL4_0)]),
timer:sleep(10000),
TicTacTree3_Full =
lists:foldl(GetTicTacTreeFun(Book1A), EmptyTree, LMDIndexes),
DL5_0 = leveled_tictac:find_dirtyleaves(TicTacTree3_Full, EmptyTree),
io:format("Dirty leaves found after expiry plus 10s ~w~n", [length(DL5_0)]),
ok = leveled_bookie:book_close(Book1A),
true = length(DL4_0) == 0.
basic_headonly(_Config) ->
% Load some AAE type objects into Leveled using the read_only mode. This
% should allow for the items to be added in batches. Confirm that the
% journal is garbage collected as expected, and that it is possible to
% perform a fold_heads style query
ObjectCount = 100000,
RootPathHO = testutil:reset_filestructure("testHO"),
StartOpts1 = [{root_path, RootPathHO},
{max_pencillercachesize, 16000},
{sync_strategy, sync},
{head_only, true}],
{ok, Bookie1} = leveled_bookie:book_start(StartOpts1),
{B1, K1, V1, S1, MD} = {"Bucket",
"Key1.1.4567.4321",
"Value1",
[],
[{"MDK1", "MDV1"}]},
{TestObject, TestSpec} = testutil:generate_testobject(B1, K1, V1, S1, MD),
{unsupported_message, put} =
testutil:book_riakput(Bookie1, TestObject, TestSpec),
ObjectSpecFun =
fun(Op) ->
fun(N) ->
Bucket = <<"B", N:32/integer>>,
Key = <<"K", N:32/integer>>,
<<SegmentID:20/integer, _RestBS/bitstring>> =
crypto:hash(md5, term_to_binary({Bucket, Key})),
<<Hash:32/integer, _RestBN/bitstring>> =
crypto:hash(md5, <<N:32/integer>>),
{Op, <<SegmentID:32/integer>>, Bucket, Key, Hash}
end
end,
ObjectSpecL = lists:map(ObjectSpecFun(add), lists:seq(1, ObjectCount)),
ok = load_objectspecs(ObjectSpecL, 32, Bookie1),
FoldFun =
fun(_B, _K, V, {HashAcc, CountAcc}) ->
{HashAcc bxor V, CountAcc + 1}
end,
InitAcc = {0, 0},
RunnerDefinition =
{foldheads_allkeys, h, {FoldFun, InitAcc}, false, false, false},
{async, Runner1} =
leveled_bookie:book_returnfolder(Bookie1, RunnerDefinition),
SW1 = os:timestamp(),
{AccH1, AccC1} = Runner1(),
io:format("AccH and AccC of ~w ~w in ~w microseconds ~n",
[AccH1, AccC1, timer:now_diff(os:timestamp(), SW1)]),
true = AccC1 == ObjectCount,
ok = leveled_bookie:book_close(Bookie1).
load_objectspecs([], _SliceSize, _Bookie) ->
ok;
load_objectspecs(ObjectSpecL, SliceSize, Bookie)
when length(ObjectSpecL) < SliceSize ->
load_objectspecs(ObjectSpecL, length(ObjectSpecL), Bookie);
load_objectspecs(ObjectSpecL, SliceSize, Bookie) ->
{Head, Tail} = lists:split(SliceSize, ObjectSpecL),
case leveled_bookie:book_mput(Bookie, Head) of
ok ->
load_objectspecs(Tail, SliceSize, Bookie);
pause ->
timer:sleep(10),
load_objectspecs(Tail, SliceSize, Bookie)
end.
load_and_check_recentaae(Book1A, Book1B, Book1C, Book1D,
SW_StartLoad, TreeSize, UnitMins,
LMDIndexes_Loaded) ->
load_and_check_recentaae(Book1A, Book1B, Book1C, Book1D,
SW_StartLoad, TreeSize, UnitMins,
LMDIndexes_Loaded, <<"$all">>).
load_and_check_recentaae(Book1A, Book1B, Book1C, Book1D,
SW_StartLoad, TreeSize, UnitMins,
LMDIndexes_Loaded, Bucket) ->
LMDIndexes =
case LMDIndexes_Loaded of
false ->
% Generate nine lists of objects
% BucketBin = list_to_binary("Bucket"),
GenMapFun =
fun(_X) ->
V = testutil:get_compressiblevalue(),
Indexes = testutil:get_randomindexes_generator(8),
testutil:generate_objects(5000,
binary_uuid,
[],
V,
Indexes)
end,
ObjLists = lists:map(GenMapFun, lists:seq(1, 9)),
% Load all nine lists into Book1A
lists:foreach(fun(ObjL) -> testutil:riakload(Book1A, ObjL) end,
ObjLists),
% Split nine lists across Book1B to Book1D, three object lists
% in each
lists:foreach(fun(ObjL) -> testutil:riakload(Book1B, ObjL) end,
lists:sublist(ObjLists, 1, 3)),
lists:foreach(fun(ObjL) -> testutil:riakload(Book1C, ObjL) end,
lists:sublist(ObjLists, 4, 3)),
lists:foreach(fun(ObjL) -> testutil:riakload(Book1D, ObjL) end,
lists:sublist(ObjLists, 7, 3)),
SW_EndLoad = os:timestamp(),
determine_lmd_indexes(SW_StartLoad, SW_EndLoad, UnitMins);
_ ->
LMDIndexes_Loaded
end,
EmptyTree = leveled_tictac:new_tree(empty, TreeSize),
GetTicTacTreeFun =
fun(Bookie) ->
get_tictactree_fun(Bookie, Bucket, TreeSize)
end,
% Get a TicTac tree representing one of the indexes in Bucket A
TicTacTree1_Full =
lists:foldl(GetTicTacTreeFun(Book1A), EmptyTree, LMDIndexes),
TicTacTree1_P1 =
lists:foldl(GetTicTacTreeFun(Book1B), EmptyTree, LMDIndexes),
TicTacTree1_P2 =
lists:foldl(GetTicTacTreeFun(Book1C), EmptyTree, LMDIndexes),
TicTacTree1_P3 =
lists:foldl(GetTicTacTreeFun(Book1D), EmptyTree, LMDIndexes),
% Merge the tree across the partitions
TicTacTree1_Joined = lists:foldl(fun leveled_tictac:merge_trees/2,
TicTacTree1_P1,
[TicTacTree1_P2, TicTacTree1_P3]),
{TicTacTree1_Full, TicTacTree1_Joined, EmptyTree, LMDIndexes}.
aae_startopts(RootPath, AAE) ->
LS = 2000,
JS = 50000000,
SS = testutil:sync_strategy(),
[{root_path, RootPath},
{sync_strategy, SS},
{cache_size, LS},
{max_journalsize, JS},
{recent_aae, AAE}].
determine_lmd_indexes(StartTS, EndTS, UnitMins) ->
StartDT = calendar:now_to_datetime(StartTS),
EndDT = calendar:now_to_datetime(EndTS),
StartTimeStr = get_strtime(StartDT, UnitMins),
EndTimeStr = get_strtime(EndDT, UnitMins),
AddTimeFun =
fun(X, Acc) ->
case lists:member(EndTimeStr, Acc) of
true ->
Acc;
false ->
NextTime =
UnitMins * 60 * X +
calendar:datetime_to_gregorian_seconds(StartDT),
NextDT =
calendar:gregorian_seconds_to_datetime(NextTime),
Acc ++ [get_strtime(NextDT, UnitMins)]
end
end,
lists:foldl(AddTimeFun, [StartTimeStr], lists:seq(1, 10)).
get_strtime(DateTime, UnitMins) ->
{{Y, M, D}, {Hour, Minute, _Second}} = DateTime,
RoundMins =
UnitMins * (Minute div UnitMins),
StrTime =
lists:flatten(io_lib:format(?LMD_FORMAT,
[Y, M, D, Hour, RoundMins])),
StrTime.
get_tictactree_fun(Bookie, Bucket, TreeSize) ->
fun(LMD, Acc) ->
SW = os:timestamp(),
ST = <<"0">>,
ET = <<"A">>,
Q = {tictactree_idx,
{Bucket,
list_to_binary("$aae." ++ LMD ++ "_bin"),
ST,
ET},
TreeSize,
fun(_B, _K) -> accumulate end},
{async, Folder} = leveled_bookie:book_returnfolder(Bookie, Q),
R = Folder(),
io:format("TicTac Tree for index ~s took " ++
"~w microseconds~n",
[LMD, timer:now_diff(os:timestamp(), SW)]),
leveled_tictac:merge_trees(R, Acc)
end.
get_segment(K, SegmentCount) ->
BinKey =
case is_binary(K) of
true ->
K;
false ->
term_to_binary(K)
end,
{SegmentID, ExtraHash} = leveled_codec:segment_hash(BinKey),
SegHash = (ExtraHash band 65535) bsl 16 + SegmentID,
leveled_tictac:get_segment(SegHash, SegmentCount).