
Make sure we hibernate any CDB files after we score them, as they may not be used for sometime, and there may be garbage binary references present.
1196 lines
51 KiB
Erlang
1196 lines
51 KiB
Erlang
%% -------- Inker's Clerk ---------
|
|
%%
|
|
%% The Inker's clerk runs compaction jobs on behalf of the Inker, informing the
|
|
%% Inker of any manifest changes when complete.
|
|
%%
|
|
%% -------- Value Compaction ---------
|
|
%%
|
|
%% Compaction requires the Inker to have four different types of keys
|
|
%% * stnd - A standard key of the form {SQN, stnd, LedgerKey} which maps to a
|
|
%% value of {Object, KeyDeltas}
|
|
%% * tomb - A tombstone for a LedgerKey {SQN, tomb, LedgerKey}
|
|
%% * keyd - An object containing key deltas only of the form
|
|
%% {SQN, keyd, LedgerKey} which maps to a value of {KeyDeltas}
|
|
%%
|
|
%% Each LedgerKey has a Tag, and for each Tag there should be a compaction
|
|
%% strategy, which will be set to one of the following:
|
|
%% * retain - KeyDeltas must be retained permanently, only values can be
|
|
%% compacted (if replaced or not_present in the ledger)
|
|
%% * recalc - The full object can be removed through comapction (if replaced or
|
|
%% not_present in the ledger), as each object with that tag can have the Key
|
|
%% Deltas recreated by passing into an assigned recalc function {LedgerKey,
|
|
%% SQN, Object, KeyDeltas, PencillerSnapshot}
|
|
%% * recovr - At compaction time this is equivalent to recalc, only KeyDeltas
|
|
%% are lost when reloading the Ledger from the Journal, and it is assumed that
|
|
%% those deltas will be resolved through external anti-entropy (e.g. read
|
|
%% repair or AAE) - or alternatively the risk of loss of persisted data from
|
|
%% the ledger is accepted for this data type
|
|
%%
|
|
%% During the compaction process for the Journal, the file chosen for
|
|
%% compaction is scanned in SQN order, and a FilterFun is passed (which will
|
|
%% normally perform a check against a snapshot of the persisted part of the
|
|
%% Ledger). If the given key is of type stnd, and this object is no longer the
|
|
%% active object under the LedgerKey, then the object can be compacted out of
|
|
%% the journal. This will lead to either its removal (if the strategy for the
|
|
%% Tag is recovr or recalc), or its replacement with a KeyDelta object.
|
|
%%
|
|
%% Tombstones cannot be reaped through this compaction process.
|
|
%%
|
|
%% Currently, KeyDeltas are also reaped if the LedgerKey has been updated and
|
|
%% the Tag has a recovr strategy. This may be the case when KeyDeltas are used
|
|
%% as a way of directly representing a change, and where anti-entropy can
|
|
%% recover from a loss.
|
|
%%
|
|
%% -------- Removing Compacted Files ---------
|
|
%%
|
|
%% Once a compaction job is complete, and the manifest change has been
|
|
%% committed, the individual journal files will get a deletion prompt. The
|
|
%% Journal processes should copy the file to the waste folder, before erasing
|
|
%% themselves.
|
|
%%
|
|
%% The Inker will have a waste duration setting, and before running compaction
|
|
%% should delete all over-age items (using the file modified date) from the
|
|
%% waste.
|
|
%%
|
|
%% -------- Tombstone Reaping ---------
|
|
%%
|
|
%% Value compaction does not remove tombstones from the database, and so a
|
|
%% separate compaction job is required for this.
|
|
%%
|
|
%% Tombstones can only be reaped for Tags set to recovr or recalc.
|
|
%%
|
|
%% The tombstone reaping process should select a file to compact, and then
|
|
%% take that file and discover the LedgerKeys of all reapable tombstones.
|
|
%% The lesger should then be scanned from SQN 0 looking for unreaped objects
|
|
%% before the tombstone. If no ushc objects exist for that tombstone, it can
|
|
%% now be reaped as part of the compaction job.
|
|
%%
|
|
%% Other tombstones cannot be reaped, as otherwise on laoding a ledger an old
|
|
%% version of the object may re-emerge.
|
|
|
|
-module(leveled_iclerk).
|
|
|
|
-behaviour(gen_server).
|
|
|
|
-include("include/leveled.hrl").
|
|
|
|
-export([init/1,
|
|
handle_call/3,
|
|
handle_cast/2,
|
|
handle_info/2,
|
|
terminate/2,
|
|
code_change/3]).
|
|
|
|
-export([clerk_new/1,
|
|
clerk_compact/6,
|
|
clerk_hashtablecalc/3,
|
|
clerk_trim/3,
|
|
clerk_promptdeletions/3,
|
|
clerk_stop/1,
|
|
clerk_loglevel/2,
|
|
clerk_addlogs/2,
|
|
clerk_removelogs/2]).
|
|
|
|
-export([schedule_compaction/3]).
|
|
|
|
-include_lib("eunit/include/eunit.hrl").
|
|
|
|
-define(JOURNAL_FILEX, "cdb").
|
|
-define(PENDING_FILEX, "pnd").
|
|
-define(SAMPLE_SIZE, 100).
|
|
-define(BATCH_SIZE, 32).
|
|
-define(BATCHES_TO_CHECK, 8).
|
|
-define(CRC_SIZE, 4).
|
|
-define(DEFAULT_RELOAD_STRATEGY, leveled_codec:inker_reload_strategy([])).
|
|
-define(INTERVALS_PER_HOUR, 4).
|
|
-define(MAX_COMPACTION_RUN, 8).
|
|
-define(SINGLEFILE_COMPACTION_TARGET, 50.0).
|
|
-define(MAXRUNLENGTH_COMPACTION_TARGET, 75.0).
|
|
|
|
-record(state, {inker :: pid() | undefined,
|
|
max_run_length :: integer() | undefined,
|
|
cdb_options = #cdb_options{} :: #cdb_options{},
|
|
waste_retention_period :: integer() | undefined,
|
|
waste_path :: string() | undefined,
|
|
reload_strategy = ?DEFAULT_RELOAD_STRATEGY :: list(),
|
|
singlefile_compactionperc = ?SINGLEFILE_COMPACTION_TARGET :: float(),
|
|
maxrunlength_compactionperc = ?MAXRUNLENGTH_COMPACTION_TARGET ::float(),
|
|
compression_method = native :: lz4|native,
|
|
scored_files = [] :: list(candidate()),
|
|
scoring_state :: scoring_state()|undefined}).
|
|
|
|
-record(candidate, {low_sqn :: integer() | undefined,
|
|
filename :: string() | undefined,
|
|
journal :: pid() | undefined,
|
|
compaction_perc :: float() | undefined}).
|
|
|
|
-record(scoring_state, {filter_fun :: fun(),
|
|
filter_server :: pid(),
|
|
max_sqn :: non_neg_integer(),
|
|
close_fun :: fun(),
|
|
start_time :: erlang:timestamp()}).
|
|
|
|
-type iclerk_options() :: #iclerk_options{}.
|
|
-type candidate() :: #candidate{}.
|
|
-type scoring_state() :: #scoring_state{}.
|
|
-type score_parameters() :: {integer(), float(), float()}.
|
|
% Score parameters are a tuple
|
|
% - of maximum run length; how long a run of consecutive files can be for
|
|
% one compaction run
|
|
% - maximum run compaction target; percentage space which should be
|
|
% released from a compaction run of the maximum length to make it a run
|
|
% worthwhile of compaction (released space is 100.0 - target e.g. 70.0
|
|
% means that 30.0% should be released)
|
|
% - single_file compaction target; percentage space which should be
|
|
% released from a compaction run of a single file to make it a run
|
|
% worthwhile of compaction (released space is 100.0 - target e.g. 70.0
|
|
% means that 30.0% should be released)
|
|
|
|
%%%============================================================================
|
|
%%% API
|
|
%%%============================================================================
|
|
|
|
-spec clerk_new(iclerk_options()) -> {ok, pid()}.
|
|
%% @doc
|
|
%% Generate a new clerk
|
|
clerk_new(InkerClerkOpts) ->
|
|
gen_server:start_link(?MODULE, [leveled_log:get_opts(), InkerClerkOpts], []).
|
|
|
|
-spec clerk_compact(pid(), pid(),
|
|
fun(), fun(), fun(),
|
|
list()) -> ok.
|
|
%% @doc
|
|
%% Trigger a compaction for this clerk if the threshold of data recovery has
|
|
%% been met
|
|
clerk_compact(Pid, Checker, InitiateFun, CloseFun, FilterFun, Manifest) ->
|
|
gen_server:cast(Pid,
|
|
{compact,
|
|
Checker,
|
|
InitiateFun,
|
|
CloseFun,
|
|
FilterFun,
|
|
Manifest}).
|
|
|
|
-spec clerk_trim(pid(), integer(), list()) -> ok.
|
|
%% @doc
|
|
%% Trim the Inker back to the persisted SQN
|
|
clerk_trim(Pid, PersistedSQN, ManifestAsList) ->
|
|
gen_server:cast(Pid, {trim, PersistedSQN, ManifestAsList}).
|
|
|
|
-spec clerk_promptdeletions(pid(), pos_integer(), list()) -> ok.
|
|
%% @doc
|
|
%%
|
|
clerk_promptdeletions(Pid, ManifestSQN, DeletedFiles) ->
|
|
gen_server:cast(Pid, {prompt_deletions, ManifestSQN, DeletedFiles}).
|
|
|
|
-spec clerk_hashtablecalc(ets:tid(), integer(), pid()) -> ok.
|
|
%% @doc
|
|
%% Spawn a dedicated clerk for the process of calculating the binary view
|
|
%% of the hastable in the CDB file - so that the file is not blocked during
|
|
%% this calculation
|
|
clerk_hashtablecalc(HashTree, StartPos, CDBpid) ->
|
|
{ok, Clerk} = gen_server:start_link(?MODULE, [leveled_log:get_opts(),
|
|
#iclerk_options{}], []),
|
|
gen_server:cast(Clerk, {hashtable_calc, HashTree, StartPos, CDBpid}).
|
|
|
|
-spec clerk_stop(pid()) -> ok.
|
|
%% @doc
|
|
%% Stop the clerk
|
|
clerk_stop(Pid) ->
|
|
gen_server:call(Pid, stop, infinity).
|
|
|
|
-spec clerk_loglevel(pid(), leveled_log:log_level()) -> ok.
|
|
%% @doc
|
|
%% Change the log level of the Journal
|
|
clerk_loglevel(Pid, LogLevel) ->
|
|
gen_server:cast(Pid, {log_level, LogLevel}).
|
|
|
|
-spec clerk_addlogs(pid(), list(string())) -> ok.
|
|
%% @doc
|
|
%% Add to the list of forced logs, a list of more forced logs
|
|
clerk_addlogs(Pid, ForcedLogs) ->
|
|
gen_server:cast(Pid, {add_logs, ForcedLogs}).
|
|
|
|
-spec clerk_removelogs(pid(), list(string())) -> ok.
|
|
%% @doc
|
|
%% Remove from the list of forced logs, a list of forced logs
|
|
clerk_removelogs(Pid, ForcedLogs) ->
|
|
gen_server:cast(Pid, {remove_logs, ForcedLogs}).
|
|
|
|
|
|
-spec clerk_scorefilelist(pid(), list(candidate())) -> ok.
|
|
%% @doc
|
|
%% Score the file at the head of the list and then send the tail of the list to
|
|
%% be scored
|
|
clerk_scorefilelist(Pid, []) ->
|
|
gen_server:cast(Pid, scoring_complete);
|
|
clerk_scorefilelist(Pid, CandidateList) ->
|
|
gen_server:cast(Pid, {score_filelist, CandidateList}).
|
|
|
|
|
|
%%%============================================================================
|
|
%%% gen_server callbacks
|
|
%%%============================================================================
|
|
|
|
init([LogOpts, IClerkOpts]) ->
|
|
leveled_log:save(LogOpts),
|
|
ReloadStrategy = IClerkOpts#iclerk_options.reload_strategy,
|
|
CDBopts = IClerkOpts#iclerk_options.cdb_options,
|
|
WP = CDBopts#cdb_options.waste_path,
|
|
WRP = IClerkOpts#iclerk_options.waste_retention_period,
|
|
|
|
MRL =
|
|
case IClerkOpts#iclerk_options.max_run_length of
|
|
undefined ->
|
|
?MAX_COMPACTION_RUN;
|
|
MRL0 ->
|
|
MRL0
|
|
end,
|
|
|
|
SFL_CompPerc =
|
|
case IClerkOpts#iclerk_options.singlefile_compactionperc of
|
|
undefined ->
|
|
?SINGLEFILE_COMPACTION_TARGET;
|
|
SFLCP when is_float(SFLCP) ->
|
|
SFLCP
|
|
end,
|
|
MRL_CompPerc =
|
|
case IClerkOpts#iclerk_options.maxrunlength_compactionperc of
|
|
undefined ->
|
|
?MAXRUNLENGTH_COMPACTION_TARGET;
|
|
MRLCP when is_float(MRLCP) ->
|
|
MRLCP
|
|
end,
|
|
|
|
{ok, #state{max_run_length = MRL,
|
|
inker = IClerkOpts#iclerk_options.inker,
|
|
cdb_options = CDBopts,
|
|
reload_strategy = ReloadStrategy,
|
|
waste_path = WP,
|
|
waste_retention_period = WRP,
|
|
singlefile_compactionperc = SFL_CompPerc,
|
|
maxrunlength_compactionperc = MRL_CompPerc,
|
|
compression_method =
|
|
IClerkOpts#iclerk_options.compression_method}}.
|
|
|
|
handle_call(stop, _From, State) ->
|
|
case State#state.scoring_state of
|
|
undefined ->
|
|
ok;
|
|
ScoringState ->
|
|
% Closed when scoring files, and so need to shutdown FilterServer
|
|
% to close down neatly
|
|
CloseFun = ScoringState#scoring_state.close_fun,
|
|
FilterServer = ScoringState#scoring_state.filter_server,
|
|
CloseFun(FilterServer)
|
|
end,
|
|
{stop, normal, ok, State}.
|
|
|
|
handle_cast({compact, Checker, InitiateFun, CloseFun, FilterFun, Manifest0},
|
|
State) ->
|
|
% Empty the waste folder
|
|
clear_waste(State),
|
|
SW = os:timestamp(),
|
|
% Clock to record the time it takes to calculate the potential for
|
|
% compaction
|
|
|
|
% Need to fetch manifest at start rather than have it be passed in
|
|
% Don't want to process a queued call waiting on an old manifest
|
|
[_Active|Manifest] = Manifest0,
|
|
{FilterServer, MaxSQN} = InitiateFun(Checker),
|
|
ok = clerk_scorefilelist(self(), Manifest),
|
|
ScoringState =
|
|
#scoring_state{filter_fun = FilterFun,
|
|
filter_server = FilterServer,
|
|
max_sqn = MaxSQN,
|
|
close_fun = CloseFun,
|
|
start_time = SW},
|
|
{noreply, State#state{scored_files = [], scoring_state = ScoringState}};
|
|
handle_cast({score_filelist, [Entry|Tail]}, State) ->
|
|
Candidates = State#state.scored_files,
|
|
{LowSQN, FN, JournalP, _LK} = Entry,
|
|
ScoringState = State#state.scoring_state,
|
|
CpctPerc = check_single_file(JournalP,
|
|
ScoringState#scoring_state.filter_fun,
|
|
ScoringState#scoring_state.filter_server,
|
|
ScoringState#scoring_state.max_sqn,
|
|
?SAMPLE_SIZE,
|
|
?BATCH_SIZE),
|
|
Candidate =
|
|
#candidate{low_sqn = LowSQN,
|
|
filename = FN,
|
|
journal = JournalP,
|
|
compaction_perc = CpctPerc},
|
|
ok = clerk_scorefilelist(self(), Tail),
|
|
{noreply, State#state{scored_files = [Candidate|Candidates]}};
|
|
handle_cast(scoring_complete, State) ->
|
|
MaxRunLength = State#state.max_run_length,
|
|
CDBopts = State#state.cdb_options,
|
|
Candidates = lists:reverse(State#state.scored_files),
|
|
ScoringState = State#state.scoring_state,
|
|
FilterFun = ScoringState#scoring_state.filter_fun,
|
|
FilterServer = ScoringState#scoring_state.filter_server,
|
|
MaxSQN = ScoringState#scoring_state.max_sqn,
|
|
CloseFun = ScoringState#scoring_state.close_fun,
|
|
SW = ScoringState#scoring_state.start_time,
|
|
ScoreParams =
|
|
{MaxRunLength,
|
|
State#state.maxrunlength_compactionperc,
|
|
State#state.singlefile_compactionperc},
|
|
{BestRun0, Score} = assess_candidates(Candidates, ScoreParams),
|
|
leveled_log:log_timer("IC003", [Score, length(BestRun0)], SW),
|
|
case Score > 0.0 of
|
|
true ->
|
|
BestRun1 = sort_run(BestRun0),
|
|
print_compaction_run(BestRun1, ScoreParams),
|
|
ManifestSlice = compact_files(BestRun1,
|
|
CDBopts,
|
|
FilterFun,
|
|
FilterServer,
|
|
MaxSQN,
|
|
State#state.reload_strategy,
|
|
State#state.compression_method),
|
|
FilesToDelete = lists:map(fun(C) ->
|
|
{C#candidate.low_sqn,
|
|
C#candidate.filename,
|
|
C#candidate.journal,
|
|
undefined}
|
|
end,
|
|
BestRun1),
|
|
leveled_log:log("IC002", [length(FilesToDelete)]),
|
|
ok = CloseFun(FilterServer),
|
|
ok = leveled_inker:ink_clerkcomplete(State#state.inker,
|
|
ManifestSlice,
|
|
FilesToDelete);
|
|
false ->
|
|
ok = CloseFun(FilterServer),
|
|
ok = leveled_inker:ink_clerkcomplete(State#state.inker, [], [])
|
|
end,
|
|
{noreply, State#state{scoring_state = undefined}, hibernate};
|
|
handle_cast({trim, PersistedSQN, ManifestAsList}, State) ->
|
|
FilesToDelete =
|
|
leveled_imanifest:find_persistedentries(PersistedSQN, ManifestAsList),
|
|
leveled_log:log("IC007", []),
|
|
ok = leveled_inker:ink_clerkcomplete(State#state.inker, [], FilesToDelete),
|
|
{noreply, State};
|
|
handle_cast({prompt_deletions, ManifestSQN, FilesToDelete}, State) ->
|
|
lists:foreach(fun({_SQN, _FN, J2D, _LK}) ->
|
|
leveled_cdb:cdb_deletepending(J2D,
|
|
ManifestSQN,
|
|
State#state.inker)
|
|
end,
|
|
FilesToDelete),
|
|
{noreply, State};
|
|
handle_cast({hashtable_calc, HashTree, StartPos, CDBpid}, State) ->
|
|
{IndexList, HashTreeBin} = leveled_cdb:hashtable_calc(HashTree, StartPos),
|
|
ok = leveled_cdb:cdb_returnhashtable(CDBpid, IndexList, HashTreeBin),
|
|
{stop, normal, State};
|
|
handle_cast({log_level, LogLevel}, State) ->
|
|
ok = leveled_log:set_loglevel(LogLevel),
|
|
CDBopts = State#state.cdb_options,
|
|
CDBopts0 = CDBopts#cdb_options{log_options = leveled_log:get_opts()},
|
|
{noreply, State#state{cdb_options = CDBopts0}};
|
|
handle_cast({add_logs, ForcedLogs}, State) ->
|
|
ok = leveled_log:add_forcedlogs(ForcedLogs),
|
|
CDBopts = State#state.cdb_options,
|
|
CDBopts0 = CDBopts#cdb_options{log_options = leveled_log:get_opts()},
|
|
{noreply, State#state{cdb_options = CDBopts0}};
|
|
handle_cast({remove_logs, ForcedLogs}, State) ->
|
|
ok = leveled_log:remove_forcedlogs(ForcedLogs),
|
|
CDBopts = State#state.cdb_options,
|
|
CDBopts0 = CDBopts#cdb_options{log_options = leveled_log:get_opts()},
|
|
{noreply, State#state{cdb_options = CDBopts0}}.
|
|
|
|
handle_info(_Info, State) ->
|
|
{noreply, State}.
|
|
|
|
terminate(normal, _State) ->
|
|
ok;
|
|
terminate(Reason, _State) ->
|
|
leveled_log:log("IC001", [Reason]).
|
|
|
|
code_change(_OldVsn, State, _Extra) ->
|
|
{ok, State}.
|
|
|
|
|
|
%%%============================================================================
|
|
%%% External functions
|
|
%%%============================================================================
|
|
|
|
-spec schedule_compaction(list(integer()),
|
|
integer(),
|
|
{integer(), integer(), integer()}) -> integer().
|
|
%% @doc
|
|
%% Schedule the next compaction event for this store. Chooses a random
|
|
%% interval, and then a random start time within the first third
|
|
%% of the interval.
|
|
%%
|
|
%% The number of Compaction runs per day can be set. This doesn't guaranteee
|
|
%% those runs, but uses the assumption there will be n runs when scheduling
|
|
%% the next one
|
|
%%
|
|
%% Compaction Hours should be the list of hours during the day (based on local
|
|
%% time when compcation can be scheduled to run)
|
|
%% e.g. [0, 1, 2, 3, 4, 21, 22, 23]
|
|
%% Runs per day is the number of compaction runs per day that should be
|
|
%% scheduled - expected to be a small integer, probably 1
|
|
%%
|
|
%% Current TS should be the outcome of os:timestamp()
|
|
%%
|
|
schedule_compaction(CompactionHours, RunsPerDay, CurrentTS) ->
|
|
% We chedule the next interval by acting as if we were scheduing all
|
|
% n intervals at random, but then only chose the next one. After each
|
|
% event is occurred the random process is repeated to determine the next
|
|
% event to schedule i.e. the unused schedule is discarded.
|
|
|
|
IntervalLength = 60 div ?INTERVALS_PER_HOUR,
|
|
TotalHours = length(CompactionHours),
|
|
|
|
LocalTime = calendar:now_to_local_time(CurrentTS),
|
|
{{NowY, NowMon, NowD},
|
|
{NowH, NowMin, _NowS}} = LocalTime,
|
|
CurrentInterval = {NowH, NowMin div IntervalLength + 1},
|
|
|
|
% Randomly select an hour and an interval for each of the runs expected
|
|
% today.
|
|
RandSelect =
|
|
fun(_X) ->
|
|
{lists:nth(leveled_rand:uniform(TotalHours), CompactionHours),
|
|
leveled_rand:uniform(?INTERVALS_PER_HOUR)}
|
|
end,
|
|
RandIntervals = lists:sort(lists:map(RandSelect,
|
|
lists:seq(1, RunsPerDay))),
|
|
|
|
% Pick the next interval from the list. The intervals before current time
|
|
% are considered as intervals tomorrow, so will only be next if there are
|
|
% no other today
|
|
CheckNotBefore = fun(A) -> A =< CurrentInterval end,
|
|
{TooEarly, MaybeOK} = lists:splitwith(CheckNotBefore, RandIntervals),
|
|
{NextDate, {NextH, NextI}} =
|
|
case MaybeOK of
|
|
[] ->
|
|
% Use first interval picked tomorrow if none of selected run times
|
|
% are today
|
|
Tmrw = calendar:date_to_gregorian_days(NowY, NowMon, NowD) + 1,
|
|
{calendar:gregorian_days_to_date(Tmrw),
|
|
lists:nth(1, TooEarly)};
|
|
_ ->
|
|
{{NowY, NowMon, NowD}, lists:nth(1, MaybeOK)}
|
|
end,
|
|
|
|
% Calculate the offset in seconds to this next interval
|
|
NextS0 = NextI * (IntervalLength * 60)
|
|
- leveled_rand:uniform(IntervalLength * 60),
|
|
NextM = NextS0 div 60,
|
|
NextS = NextS0 rem 60,
|
|
TimeDiff = calendar:time_difference(LocalTime,
|
|
{NextDate, {NextH, NextM, NextS}}),
|
|
{Days, {Hours, Mins, Secs}} = TimeDiff,
|
|
Days * 86400 + Hours * 3600 + Mins * 60 + Secs.
|
|
|
|
|
|
%%%============================================================================
|
|
%%% Internal functions
|
|
%%%============================================================================
|
|
|
|
|
|
%% @doc
|
|
%% Get a score for a single CDB file in the journal. This will pull out a bunch
|
|
%% of keys and sizes at random in an efficient way (by scanning the hashtable
|
|
%% then just picking the key and size information of disk).
|
|
%%
|
|
%% The score should represent a percentage which is the size of the file by
|
|
%% comparison to the original file if compaction was to be run. So if a file
|
|
%% can be reduced in size by 30% the score will be 70%.
|
|
%%
|
|
%% The score is based on a random sample - so will not be consistent between
|
|
%% calls.
|
|
check_single_file(CDB, FilterFun, FilterServer, MaxSQN, SampleSize, BatchSize) ->
|
|
FN = leveled_cdb:cdb_filename(CDB),
|
|
PositionList = leveled_cdb:cdb_getpositions(CDB, SampleSize),
|
|
KeySizeList = fetch_inbatches(PositionList, BatchSize, CDB, []),
|
|
Score =
|
|
size_comparison_score(KeySizeList, FilterFun, FilterServer, MaxSQN),
|
|
leveled_log:log("IC004", [FN, Score]),
|
|
Score.
|
|
|
|
size_comparison_score(KeySizeList, FilterFun, FilterServer, MaxSQN) ->
|
|
FoldFunForSizeCompare =
|
|
fun(KS, {ActSize, RplSize}) ->
|
|
case KS of
|
|
{{SQN, _Type, PK}, Size} ->
|
|
Check = FilterFun(FilterServer, PK, SQN),
|
|
case {Check, SQN > MaxSQN} of
|
|
{true, _} ->
|
|
{ActSize + Size - ?CRC_SIZE, RplSize};
|
|
{false, true} ->
|
|
{ActSize + Size - ?CRC_SIZE, RplSize};
|
|
_ ->
|
|
{ActSize, RplSize + Size - ?CRC_SIZE}
|
|
end;
|
|
_ ->
|
|
% There is a key which is not in expected format
|
|
% Not that the key-size list has been filtered for
|
|
% errors by leveled_cdb - but this doesn't know the
|
|
% expected format of the key
|
|
{ActSize, RplSize}
|
|
end
|
|
end,
|
|
|
|
R0 = lists:foldl(FoldFunForSizeCompare, {0, 0}, KeySizeList),
|
|
{ActiveSize, ReplacedSize} = R0,
|
|
case ActiveSize + ReplacedSize of
|
|
0 ->
|
|
100.0;
|
|
_ ->
|
|
100 * ActiveSize / (ActiveSize + ReplacedSize)
|
|
end.
|
|
|
|
|
|
fetch_inbatches([], _BatchSize, CDB, CheckedList) ->
|
|
ok = leveled_cdb:cdb_clerkcomplete(CDB),
|
|
CheckedList;
|
|
fetch_inbatches(PositionList, BatchSize, CDB, CheckedList) ->
|
|
{Batch, Tail} = if
|
|
length(PositionList) >= BatchSize ->
|
|
lists:split(BatchSize, PositionList);
|
|
true ->
|
|
{PositionList, []}
|
|
end,
|
|
KL_List = leveled_cdb:cdb_directfetch(CDB, Batch, key_size),
|
|
fetch_inbatches(Tail, BatchSize, CDB, CheckedList ++ KL_List).
|
|
|
|
|
|
-spec assess_candidates(list(candidate()), score_parameters())
|
|
-> {list(candidate()), float()}.
|
|
%% @doc
|
|
%% For each run length we need to assess all the possible runs of candidates,
|
|
%% to determine which is the best score - to be put forward as the best
|
|
%% candidate run for compaction.
|
|
%%
|
|
%% Although this requires many loops over the list of the candidate, as the
|
|
%% file scores have already been calculated the cost per loop should not be
|
|
%% a high burden. Reducing the maximum run length, will reduce the cost of
|
|
%% this exercise should be a problem.
|
|
%%
|
|
%% The score parameters are used to produce the score of the compaction run,
|
|
%% with a higher score being better. The parameters are the maximum run
|
|
%% length and the compaction targets (for max run length and single file).
|
|
%% The score of an individual file is the approximate percentage of the space
|
|
%% that would be retained after compaction (e.g. 100 less the percentage of
|
|
%% space wasted by historic objects).
|
|
%%
|
|
%% So a file score of 60% indicates that 40% of the space would be
|
|
%% reclaimed following compaction. A single file target of 50% would not be
|
|
%% met for this file. However, if there are 4 consecutive files scoring 60%,
|
|
%% and the maximum run length is 4, and the maximum run length compaction
|
|
%% target is 70% - then this run of four files would be a viable candidate
|
|
%% for compaction.
|
|
assess_candidates(AllCandidates, Params) ->
|
|
MaxRunLength = min(element(1, Params), length(AllCandidates)),
|
|
NaiveBestRun = lists:sublist(AllCandidates, MaxRunLength),
|
|
% This will end up being scored twice, but lets take a guess at
|
|
% the best scoring run to take into the loop
|
|
FoldFun =
|
|
fun(RunLength, Best) ->
|
|
assess_for_runlength(RunLength, AllCandidates, Params, Best)
|
|
end,
|
|
% Check all run lengths to find the best candidate. Reverse the list of
|
|
% run lengths, so that longer runs win on equality of score
|
|
lists:foldl(FoldFun,
|
|
{NaiveBestRun, score_run(NaiveBestRun, Params)},
|
|
lists:reverse(lists:seq(1, MaxRunLength))).
|
|
|
|
|
|
-spec assess_for_runlength(integer(), list(candidate()), score_parameters(),
|
|
{list(candidate()), float()})
|
|
-> {list(candidate()), float()}.
|
|
%% @doc
|
|
%% For a given run length, calculate the scores for all consecutive runs of
|
|
%% files, comparing the score with the best run which has beens een so far.
|
|
%% The best is a tuple of the actual run of candidates, along with the score
|
|
%% achieved for that run
|
|
assess_for_runlength(RunLength, AllCandidates, Params, Best) ->
|
|
NumberOfRuns = 1 + length(AllCandidates) - RunLength,
|
|
FoldFun =
|
|
fun(Offset, {BestRun, BestScore}) ->
|
|
Run = lists:sublist(AllCandidates, Offset, RunLength),
|
|
Score = score_run(Run, Params),
|
|
case Score > BestScore of
|
|
true -> {Run, Score};
|
|
false -> {BestRun, BestScore}
|
|
end
|
|
end,
|
|
lists:foldl(FoldFun, Best, lists:seq(1, NumberOfRuns)).
|
|
|
|
|
|
-spec score_run(list(candidate()), score_parameters()) -> float().
|
|
%% @doc
|
|
%% Score a run. Caluclate the avergae score across all the files in the run,
|
|
%% and deduct that from a target score. Good candidate runs for comapction
|
|
%% have larger (positive) scores. Bad candidate runs for compaction have
|
|
%% negative scores.
|
|
score_run([], _Params) ->
|
|
0.0;
|
|
score_run(Run, {MaxRunLength, MR_CT, SF_CT}) ->
|
|
TargetIncr =
|
|
case MaxRunLength of
|
|
1 ->
|
|
0.0;
|
|
MaxRunSize ->
|
|
(MR_CT - SF_CT) / (MaxRunSize - 1)
|
|
end,
|
|
Target = SF_CT + TargetIncr * (length(Run) - 1),
|
|
RunTotal = lists:foldl(fun(Cand, Acc) ->
|
|
Acc + Cand#candidate.compaction_perc end,
|
|
0.0,
|
|
Run),
|
|
Target - RunTotal / length(Run).
|
|
|
|
|
|
print_compaction_run(BestRun, ScoreParams) ->
|
|
leveled_log:log("IC005", [length(BestRun),
|
|
score_run(BestRun, ScoreParams)]),
|
|
lists:foreach(fun(File) ->
|
|
leveled_log:log("IC006", [File#candidate.filename])
|
|
end,
|
|
BestRun).
|
|
|
|
sort_run(RunOfFiles) ->
|
|
CompareFun = fun(Cand1, Cand2) ->
|
|
Cand1#candidate.low_sqn =< Cand2#candidate.low_sqn end,
|
|
lists:sort(CompareFun, RunOfFiles).
|
|
|
|
compact_files(BestRun, CDBopts, FilterFun, FilterServer,
|
|
MaxSQN, RStrategy, PressMethod) ->
|
|
BatchesOfPositions = get_all_positions(BestRun, []),
|
|
compact_files(BatchesOfPositions,
|
|
CDBopts,
|
|
null,
|
|
FilterFun,
|
|
FilterServer,
|
|
MaxSQN,
|
|
RStrategy,
|
|
PressMethod,
|
|
[]).
|
|
|
|
|
|
compact_files([], _CDBopts, null, _FilterFun, _FilterServer, _MaxSQN,
|
|
_RStrategy, _PressMethod, ManSlice0) ->
|
|
ManSlice0;
|
|
compact_files([], _CDBopts, ActiveJournal0, _FilterFun, _FilterServer, _MaxSQN,
|
|
_RStrategy, _PressMethod, ManSlice0) ->
|
|
ManSlice1 = ManSlice0 ++ leveled_imanifest:generate_entry(ActiveJournal0),
|
|
ManSlice1;
|
|
compact_files([Batch|T], CDBopts, ActiveJournal0,
|
|
FilterFun, FilterServer, MaxSQN,
|
|
RStrategy, PressMethod, ManSlice0) ->
|
|
{SrcJournal, PositionList} = Batch,
|
|
KVCs0 = leveled_cdb:cdb_directfetch(SrcJournal,
|
|
PositionList,
|
|
key_value_check),
|
|
KVCs1 = filter_output(KVCs0,
|
|
FilterFun,
|
|
FilterServer,
|
|
MaxSQN,
|
|
RStrategy),
|
|
{ActiveJournal1, ManSlice1} = write_values(KVCs1,
|
|
CDBopts,
|
|
ActiveJournal0,
|
|
ManSlice0,
|
|
PressMethod),
|
|
% The inker's clerk will no longer need these (potentially large) binaries,
|
|
% so force garbage collection at this point. This will mean when we roll
|
|
% each CDB file there will be no remaining references to the binaries that
|
|
% have been transferred and the memory can immediately be cleared
|
|
garbage_collect(),
|
|
compact_files(T, CDBopts, ActiveJournal1, FilterFun, FilterServer, MaxSQN,
|
|
RStrategy, PressMethod, ManSlice1).
|
|
|
|
get_all_positions([], PositionBatches) ->
|
|
PositionBatches;
|
|
get_all_positions([HeadRef|RestOfBest], PositionBatches) ->
|
|
SrcJournal = HeadRef#candidate.journal,
|
|
Positions = leveled_cdb:cdb_getpositions(SrcJournal, all),
|
|
leveled_log:log("IC008", [HeadRef#candidate.filename, length(Positions)]),
|
|
Batches = split_positions_into_batches(lists:sort(Positions),
|
|
SrcJournal,
|
|
[]),
|
|
get_all_positions(RestOfBest, PositionBatches ++ Batches).
|
|
|
|
split_positions_into_batches([], _Journal, Batches) ->
|
|
Batches;
|
|
split_positions_into_batches(Positions, Journal, Batches) ->
|
|
{ThisBatch, Tail} = if
|
|
length(Positions) > ?BATCH_SIZE ->
|
|
lists:split(?BATCH_SIZE, Positions);
|
|
true ->
|
|
{Positions, []}
|
|
end,
|
|
split_positions_into_batches(Tail,
|
|
Journal,
|
|
Batches ++ [{Journal, ThisBatch}]).
|
|
|
|
|
|
%% @doc
|
|
%% For the Keys and values taken from the Journal file, which are required
|
|
%% in the compacted journal file. To be required, they must still be active
|
|
%% (i.e. be the current SQN for that LedgerKey in the Ledger). However, if
|
|
%% it is not active, we still need to retain some information if for this
|
|
%% object tag we want to be able to rebuild the KeyStore by relaoding the
|
|
%% KeyDeltas (the retain reload strategy)
|
|
%%
|
|
%% If the reload strategy is recalc, we assume that we can reload by
|
|
%% recalculating the KeyChanges by looking at the object when we reload. So
|
|
%% old objects can be discarded.
|
|
%%
|
|
%% If the strategy is skip, we don't care about KeyDeltas. Note though, that
|
|
%% if the ledger is deleted it may not be possible to safely rebuild a KeyStore
|
|
%% if it contains index entries. The hot_backup approach is also not safe with
|
|
%% a `skip` strategy.
|
|
filter_output(KVCs, FilterFun, FilterServer, MaxSQN, ReloadStrategy) ->
|
|
FoldFun =
|
|
fun(KVC0, Acc) ->
|
|
case KVC0 of
|
|
{_InkKey, crc_wonky, false} ->
|
|
% Bad entry, disregard, don't check
|
|
Acc;
|
|
{JK, JV, _Check} ->
|
|
{SQN, LK} =
|
|
leveled_codec:from_journalkey(JK),
|
|
CompactStrategy =
|
|
leveled_codec:get_tagstrategy(LK, ReloadStrategy),
|
|
KeyValid = FilterFun(FilterServer, LK, SQN),
|
|
IsInMemory = SQN > MaxSQN,
|
|
case {KeyValid or IsInMemory, CompactStrategy} of
|
|
{true, _} ->
|
|
% This entry may still be required regardless of
|
|
% strategy
|
|
[KVC0|Acc];
|
|
{false, retain} ->
|
|
% If we have a retain strategy, it can't be
|
|
% discarded - but the value part is no longer
|
|
% required as this version has been replaced
|
|
{JK0, JV0} =
|
|
leveled_codec:revert_to_keydeltas(JK, JV),
|
|
[{JK0, JV0, null}|Acc];
|
|
{false, _} ->
|
|
% This is out of date and not retained - discard
|
|
Acc
|
|
end
|
|
end
|
|
end,
|
|
lists:reverse(lists:foldl(FoldFun, [], KVCs)).
|
|
|
|
|
|
write_values([], _CDBopts, Journal0, ManSlice0, _PressMethod) ->
|
|
{Journal0, ManSlice0};
|
|
write_values(KVCList, CDBopts, Journal0, ManSlice0, PressMethod) ->
|
|
KVList = lists:map(fun({K, V, _C}) ->
|
|
% Compress the value as part of compaction
|
|
{K, leveled_codec:maybe_compress(V, PressMethod)}
|
|
end,
|
|
KVCList),
|
|
{ok, Journal1} = case Journal0 of
|
|
null ->
|
|
{TK, _TV} = lists:nth(1, KVList),
|
|
{SQN, _LK} = leveled_codec:from_journalkey(TK),
|
|
FP = CDBopts#cdb_options.file_path,
|
|
FN = leveled_inker:filepath(FP,
|
|
SQN,
|
|
compact_journal),
|
|
leveled_log:log("IC009", [FN]),
|
|
leveled_cdb:cdb_open_writer(FN, CDBopts);
|
|
_ ->
|
|
{ok, Journal0}
|
|
end,
|
|
R = leveled_cdb:cdb_mput(Journal1, KVList),
|
|
case R of
|
|
ok ->
|
|
{Journal1, ManSlice0};
|
|
roll ->
|
|
ManSlice1 = ManSlice0 ++ leveled_imanifest:generate_entry(Journal1),
|
|
write_values(KVCList, CDBopts, null, ManSlice1, PressMethod)
|
|
end.
|
|
|
|
clear_waste(State) ->
|
|
case State#state.waste_path of
|
|
undefined ->
|
|
ok;
|
|
WP ->
|
|
WRP = State#state.waste_retention_period,
|
|
{ok, ClearedJournals} = file:list_dir(WP),
|
|
N = calendar:datetime_to_gregorian_seconds(calendar:local_time()),
|
|
DeleteJournalFun =
|
|
fun(DelJ) ->
|
|
LMD = filelib:last_modified(WP ++ DelJ),
|
|
case N - calendar:datetime_to_gregorian_seconds(LMD) of
|
|
LMD_Delta when LMD_Delta >= WRP ->
|
|
ok = file:delete(WP ++ DelJ),
|
|
leveled_log:log("IC010", [WP ++ DelJ]);
|
|
LMD_Delta ->
|
|
leveled_log:log("IC011", [WP ++ DelJ, LMD_Delta]),
|
|
ok
|
|
end
|
|
end,
|
|
lists:foreach(DeleteJournalFun, ClearedJournals)
|
|
end.
|
|
|
|
|
|
%%%============================================================================
|
|
%%% Test
|
|
%%%============================================================================
|
|
|
|
|
|
-ifdef(TEST).
|
|
|
|
schedule_test() ->
|
|
schedule_test_bycount(1),
|
|
schedule_test_bycount(2),
|
|
schedule_test_bycount(4).
|
|
|
|
schedule_test_bycount(N) ->
|
|
LocalTimeAsDateTime = {{2017,3,30},{15,27,0}},
|
|
CurrentTS= local_time_to_now(LocalTimeAsDateTime),
|
|
SecondsToCompaction0 = schedule_compaction([16], N, CurrentTS),
|
|
io:format("Seconds to compaction ~w~n", [SecondsToCompaction0]),
|
|
?assertMatch(true, SecondsToCompaction0 > 1800),
|
|
?assertMatch(true, SecondsToCompaction0 < 5700),
|
|
SecondsToCompaction1 = schedule_compaction([14], N, CurrentTS), % tomorrow!
|
|
io:format("Seconds to compaction ~w for count ~w~n",
|
|
[SecondsToCompaction1, N]),
|
|
?assertMatch(true, SecondsToCompaction1 >= 81180),
|
|
?assertMatch(true, SecondsToCompaction1 =< 84780).
|
|
|
|
local_time_to_now(DateTime) ->
|
|
[UTC] = calendar:local_time_to_universal_time_dst(DateTime),
|
|
Epoch = calendar:datetime_to_gregorian_seconds({{1970, 1, 1}, {0, 0, 0}}),
|
|
Seconds = calendar:datetime_to_gregorian_seconds(UTC) - Epoch,
|
|
{Seconds div 1000000, Seconds rem 1000000, 0}.
|
|
|
|
simple_score_test() ->
|
|
Run1 = [#candidate{compaction_perc = 75.0},
|
|
#candidate{compaction_perc = 75.0},
|
|
#candidate{compaction_perc = 76.0},
|
|
#candidate{compaction_perc = 70.0}],
|
|
?assertMatch(-4.0, score_run(Run1, {4, 70.0, 40.0})),
|
|
Run2 = [#candidate{compaction_perc = 75.0}],
|
|
?assertMatch(-35.0, score_run(Run2, {4, 70.0, 40.0})),
|
|
?assertMatch(0.0, score_run([], {4, 40.0, 70.0})),
|
|
Run3 = [#candidate{compaction_perc = 100.0}],
|
|
?assertMatch(-60.0, score_run(Run3, {4, 70.0, 40.0})).
|
|
|
|
file_gc_test() ->
|
|
State = #state{waste_path="test/test_area/waste/",
|
|
waste_retention_period=1},
|
|
ok = filelib:ensure_dir(State#state.waste_path),
|
|
file:write_file(State#state.waste_path ++ "1.cdb", term_to_binary("Hello")),
|
|
timer:sleep(1100),
|
|
file:write_file(State#state.waste_path ++ "2.cdb", term_to_binary("Hello")),
|
|
clear_waste(State),
|
|
{ok, ClearedJournals} = file:list_dir(State#state.waste_path),
|
|
?assertMatch(["2.cdb"], ClearedJournals),
|
|
timer:sleep(1100),
|
|
clear_waste(State),
|
|
{ok, ClearedJournals2} = file:list_dir(State#state.waste_path),
|
|
?assertMatch([], ClearedJournals2).
|
|
|
|
|
|
check_bestrun(CandidateList, Params) ->
|
|
{BestRun, _Score} = assess_candidates(CandidateList, Params),
|
|
lists:map(fun(C) -> C#candidate.filename end, BestRun).
|
|
|
|
find_bestrun_test() ->
|
|
%% Tests dependent on these defaults
|
|
%% -define(MAX_COMPACTION_RUN, 4).
|
|
%% -define(SINGLEFILE_COMPACTION_TARGET, 40.0).
|
|
%% -define(MAXRUNLENGTH_COMPACTION_TARGET, 60.0).
|
|
%% Tested first with blocks significant as no back-tracking
|
|
Params = {4, 60.0, 40.0},
|
|
Block1 = [#candidate{compaction_perc = 55.0, filename = "a"},
|
|
#candidate{compaction_perc = 65.0, filename = "b"},
|
|
#candidate{compaction_perc = 42.0, filename = "c"},
|
|
#candidate{compaction_perc = 50.0, filename = "d"}],
|
|
Block2 = [#candidate{compaction_perc = 38.0, filename = "e"},
|
|
#candidate{compaction_perc = 75.0, filename = "f"},
|
|
#candidate{compaction_perc = 75.0, filename = "g"},
|
|
#candidate{compaction_perc = 45.0, filename = "h"}],
|
|
Block3 = [#candidate{compaction_perc = 70.0, filename = "i"},
|
|
#candidate{compaction_perc = 100.0, filename = "j"},
|
|
#candidate{compaction_perc = 100.0, filename = "k"},
|
|
#candidate{compaction_perc = 100.0, filename = "l"}],
|
|
Block4 = [#candidate{compaction_perc = 55.0, filename = "m"},
|
|
#candidate{compaction_perc = 56.0, filename = "n"},
|
|
#candidate{compaction_perc = 57.0, filename = "o"},
|
|
#candidate{compaction_perc = 40.0, filename = "p"}],
|
|
Block5 = [#candidate{compaction_perc = 60.0, filename = "q"},
|
|
#candidate{compaction_perc = 60.0, filename = "r"}],
|
|
CList0 = Block1 ++ Block2 ++ Block3 ++ Block4 ++ Block5,
|
|
?assertMatch(["b", "c", "d", "e"], check_bestrun(CList0, Params)),
|
|
CList1 = CList0 ++ [#candidate{compaction_perc = 20.0, filename="s"}],
|
|
?assertMatch(["s"], check_bestrun(CList1, Params)),
|
|
CList2 = Block4 ++ Block3 ++ Block2 ++ Block1 ++ Block5,
|
|
?assertMatch(["h", "a", "b", "c"], check_bestrun(CList2, Params)),
|
|
CList3 = Block5 ++ Block1 ++ Block2 ++ Block3 ++ Block4,
|
|
?assertMatch(["b", "c", "d", "e"],check_bestrun(CList3, Params)).
|
|
|
|
handle_emptycandidatelist_test() ->
|
|
?assertMatch({[], 0.0}, assess_candidates([], {4, 60.0, 40.0})).
|
|
|
|
test_ledgerkey(Key) ->
|
|
{o, "Bucket", Key, null}.
|
|
|
|
test_inkerkv(SQN, Key, V, IdxSpecs) ->
|
|
leveled_codec:to_inkerkv(test_ledgerkey(Key), SQN, V, IdxSpecs,
|
|
native, false).
|
|
|
|
fetch_testcdb(RP) ->
|
|
FN1 = leveled_inker:filepath(RP, 1, new_journal),
|
|
{ok,
|
|
CDB1} = leveled_cdb:cdb_open_writer(FN1,
|
|
#cdb_options{binary_mode=true}),
|
|
{K1, V1} = test_inkerkv(1, "Key1", "Value1", {[], infinity}),
|
|
{K2, V2} = test_inkerkv(2, "Key2", "Value2", {[], infinity}),
|
|
{K3, V3} = test_inkerkv(3, "Key3", "Value3", {[], infinity}),
|
|
{K4, V4} = test_inkerkv(4, "Key1", "Value4", {[], infinity}),
|
|
{K5, V5} = test_inkerkv(5, "Key1", "Value5", {[], infinity}),
|
|
{K6, V6} = test_inkerkv(6, "Key1", "Value6", {[], infinity}),
|
|
{K7, V7} = test_inkerkv(7, "Key1", "Value7", {[], infinity}),
|
|
{K8, V8} = test_inkerkv(8, "Key1", "Value8", {[], infinity}),
|
|
ok = leveled_cdb:cdb_put(CDB1, K1, V1),
|
|
ok = leveled_cdb:cdb_put(CDB1, K2, V2),
|
|
ok = leveled_cdb:cdb_put(CDB1, K3, V3),
|
|
ok = leveled_cdb:cdb_put(CDB1, K4, V4),
|
|
ok = leveled_cdb:cdb_put(CDB1, K5, V5),
|
|
ok = leveled_cdb:cdb_put(CDB1, K6, V6),
|
|
ok = leveled_cdb:cdb_put(CDB1, K7, V7),
|
|
ok = leveled_cdb:cdb_put(CDB1, K8, V8),
|
|
{ok, FN2} = leveled_cdb:cdb_complete(CDB1),
|
|
leveled_cdb:cdb_open_reader(FN2, #cdb_options{binary_mode=true}).
|
|
|
|
check_single_file_test() ->
|
|
RP = "test/test_area/",
|
|
ok = filelib:ensure_dir(leveled_inker:filepath(RP, journal_dir)),
|
|
{ok, CDB} = fetch_testcdb(RP),
|
|
LedgerSrv1 = [{8, {o, "Bucket", "Key1", null}},
|
|
{2, {o, "Bucket", "Key2", null}},
|
|
{3, {o, "Bucket", "Key3", null}}],
|
|
LedgerFun1 = fun(Srv, Key, ObjSQN) ->
|
|
case lists:keyfind(ObjSQN, 1, Srv) of
|
|
{ObjSQN, Key} ->
|
|
true;
|
|
_ ->
|
|
false
|
|
end end,
|
|
Score1 = check_single_file(CDB, LedgerFun1, LedgerSrv1, 9, 8, 4),
|
|
?assertMatch(37.5, Score1),
|
|
LedgerFun2 = fun(_Srv, _Key, _ObjSQN) -> true end,
|
|
Score2 = check_single_file(CDB, LedgerFun2, LedgerSrv1, 9, 8, 4),
|
|
?assertMatch(100.0, Score2),
|
|
Score3 = check_single_file(CDB, LedgerFun1, LedgerSrv1, 9, 8, 3),
|
|
?assertMatch(37.5, Score3),
|
|
Score4 = check_single_file(CDB, LedgerFun1, LedgerSrv1, 4, 8, 4),
|
|
?assertMatch(75.0, Score4),
|
|
ok = leveled_cdb:cdb_deletepending(CDB),
|
|
ok = leveled_cdb:cdb_destroy(CDB).
|
|
|
|
|
|
compact_single_file_setup() ->
|
|
RP = "test/test_area/",
|
|
ok = filelib:ensure_dir(leveled_inker:filepath(RP, journal_dir)),
|
|
{ok, CDB} = fetch_testcdb(RP),
|
|
Candidate = #candidate{journal = CDB,
|
|
low_sqn = 1,
|
|
filename = "test",
|
|
compaction_perc = 37.5},
|
|
LedgerSrv1 = [{8, {o, "Bucket", "Key1", null}},
|
|
{2, {o, "Bucket", "Key2", null}},
|
|
{3, {o, "Bucket", "Key3", null}}],
|
|
LedgerFun1 = fun(Srv, Key, ObjSQN) ->
|
|
case lists:keyfind(ObjSQN, 1, Srv) of
|
|
{ObjSQN, Key} ->
|
|
true;
|
|
_ ->
|
|
false
|
|
end end,
|
|
CompactFP = leveled_inker:filepath(RP, journal_compact_dir),
|
|
ok = filelib:ensure_dir(CompactFP),
|
|
{Candidate, LedgerSrv1, LedgerFun1, CompactFP, CDB}.
|
|
|
|
compact_single_file_recovr_test() ->
|
|
{Candidate,
|
|
LedgerSrv1,
|
|
LedgerFun1,
|
|
CompactFP,
|
|
CDB} = compact_single_file_setup(),
|
|
CDBOpts = #cdb_options{binary_mode=true},
|
|
[{LowSQN, FN, _PidOldR, LastKey}] =
|
|
compact_files([Candidate],
|
|
CDBOpts#cdb_options{file_path=CompactFP},
|
|
LedgerFun1,
|
|
LedgerSrv1,
|
|
9,
|
|
[{?STD_TAG, recovr}],
|
|
native),
|
|
io:format("FN of ~s~n", [FN]),
|
|
?assertMatch(2, LowSQN),
|
|
{ok, PidR} = leveled_cdb:cdb_reopen_reader(FN, LastKey, CDBOpts),
|
|
?assertMatch(probably,
|
|
leveled_cdb:cdb_keycheck(PidR,
|
|
{8,
|
|
stnd,
|
|
test_ledgerkey("Key1")})),
|
|
?assertMatch(missing, leveled_cdb:cdb_get(PidR,
|
|
{7,
|
|
stnd,
|
|
test_ledgerkey("Key1")})),
|
|
?assertMatch(missing, leveled_cdb:cdb_get(PidR,
|
|
{1,
|
|
stnd,
|
|
test_ledgerkey("Key1")})),
|
|
RKV1 = leveled_cdb:cdb_get(PidR,
|
|
{2,
|
|
stnd,
|
|
test_ledgerkey("Key2")}),
|
|
?assertMatch({{_, _}, {"Value2", {[], infinity}}},
|
|
leveled_codec:from_inkerkv(RKV1)),
|
|
ok = leveled_cdb:cdb_close(PidR),
|
|
ok = leveled_cdb:cdb_deletepending(CDB),
|
|
ok = leveled_cdb:cdb_destroy(CDB).
|
|
|
|
|
|
compact_single_file_retain_test() ->
|
|
{Candidate,
|
|
LedgerSrv1,
|
|
LedgerFun1,
|
|
CompactFP,
|
|
CDB} = compact_single_file_setup(),
|
|
CDBOpts = #cdb_options{binary_mode=true},
|
|
[{LowSQN, FN, _PidOldR, LastKey}] =
|
|
compact_files([Candidate],
|
|
CDBOpts#cdb_options{file_path=CompactFP},
|
|
LedgerFun1,
|
|
LedgerSrv1,
|
|
9,
|
|
[{?STD_TAG, retain}],
|
|
native),
|
|
io:format("FN of ~s~n", [FN]),
|
|
?assertMatch(1, LowSQN),
|
|
{ok, PidR} = leveled_cdb:cdb_reopen_reader(FN, LastKey, CDBOpts),
|
|
?assertMatch(probably,
|
|
leveled_cdb:cdb_keycheck(PidR,
|
|
{8,
|
|
stnd,
|
|
test_ledgerkey("Key1")})),
|
|
?assertMatch(missing, leveled_cdb:cdb_get(PidR,
|
|
{7,
|
|
stnd,
|
|
test_ledgerkey("Key1")})),
|
|
?assertMatch(missing, leveled_cdb:cdb_get(PidR,
|
|
{1,
|
|
stnd,
|
|
test_ledgerkey("Key1")})),
|
|
RKV1 = leveled_cdb:cdb_get(PidR,
|
|
{2,
|
|
stnd,
|
|
test_ledgerkey("Key2")}),
|
|
?assertMatch({{_, _}, {"Value2", {[], infinity}}},
|
|
leveled_codec:from_inkerkv(RKV1)),
|
|
ok = leveled_cdb:cdb_close(PidR),
|
|
ok = leveled_cdb:cdb_deletepending(CDB),
|
|
ok = leveled_cdb:cdb_destroy(CDB).
|
|
|
|
compact_empty_file_test() ->
|
|
RP = "test/test_area/",
|
|
ok = filelib:ensure_dir(leveled_inker:filepath(RP, journal_dir)),
|
|
FN1 = leveled_inker:filepath(RP, 1, new_journal),
|
|
CDBopts = #cdb_options{binary_mode=true},
|
|
{ok, CDB1} = leveled_cdb:cdb_open_writer(FN1, CDBopts),
|
|
ok = leveled_cdb:cdb_put(CDB1, {1, stnd, test_ledgerkey("Key1")}, <<>>),
|
|
{ok, FN2} = leveled_cdb:cdb_complete(CDB1),
|
|
{ok, CDB2} = leveled_cdb:cdb_open_reader(FN2),
|
|
LedgerSrv1 = [{8, {o, "Bucket", "Key1", null}},
|
|
{2, {o, "Bucket", "Key2", null}},
|
|
{3, {o, "Bucket", "Key3", null}}],
|
|
LedgerFun1 = fun(_Srv, _Key, _ObjSQN) -> false end,
|
|
Score1 = check_single_file(CDB2, LedgerFun1, LedgerSrv1, 9, 8, 4),
|
|
?assertMatch(100.0, Score1),
|
|
ok = leveled_cdb:cdb_deletepending(CDB2),
|
|
ok = leveled_cdb:cdb_destroy(CDB2).
|
|
|
|
compare_candidate_test() ->
|
|
Candidate1 = #candidate{low_sqn=1},
|
|
Candidate2 = #candidate{low_sqn=2},
|
|
Candidate3 = #candidate{low_sqn=3},
|
|
Candidate4 = #candidate{low_sqn=4},
|
|
?assertMatch([Candidate1, Candidate2, Candidate3, Candidate4],
|
|
sort_run([Candidate3, Candidate2, Candidate4, Candidate1])).
|
|
|
|
compact_singlefile_totwosmallfiles_test_() ->
|
|
{timeout, 60, fun compact_singlefile_totwosmallfiles_testto/0}.
|
|
|
|
compact_singlefile_totwosmallfiles_testto() ->
|
|
RP = "test/test_area/",
|
|
CP = "test/test_area/journal/journal_file/post_compact/",
|
|
ok = filelib:ensure_dir(CP),
|
|
FN1 = leveled_inker:filepath(RP, 1, new_journal),
|
|
CDBoptsLarge = #cdb_options{binary_mode=true, max_size=30000000},
|
|
{ok, CDB1} = leveled_cdb:cdb_open_writer(FN1, CDBoptsLarge),
|
|
lists:foreach(fun(X) ->
|
|
LK = test_ledgerkey("Key" ++ integer_to_list(X)),
|
|
Value = leveled_rand:rand_bytes(1024),
|
|
{IK, IV} =
|
|
leveled_codec:to_inkerkv(LK, X, Value,
|
|
{[], infinity},
|
|
native, true),
|
|
ok = leveled_cdb:cdb_put(CDB1, IK, IV)
|
|
end,
|
|
lists:seq(1, 1000)),
|
|
{ok, NewName} = leveled_cdb:cdb_complete(CDB1),
|
|
{ok, CDBr} = leveled_cdb:cdb_open_reader(NewName),
|
|
CDBoptsSmall =
|
|
#cdb_options{binary_mode=true, max_size=400000, file_path=CP},
|
|
BestRun1 = [#candidate{low_sqn=1,
|
|
filename=leveled_cdb:cdb_filename(CDBr),
|
|
journal=CDBr,
|
|
compaction_perc=50.0}],
|
|
FakeFilterFun = fun(_FS, _LK, SQN) -> SQN rem 2 == 0 end,
|
|
|
|
ManifestSlice = compact_files(BestRun1,
|
|
CDBoptsSmall,
|
|
FakeFilterFun,
|
|
null,
|
|
900,
|
|
[{?STD_TAG, recovr}],
|
|
native),
|
|
?assertMatch(2, length(ManifestSlice)),
|
|
lists:foreach(fun({_SQN, _FN, CDB, _LK}) ->
|
|
ok = leveled_cdb:cdb_deletepending(CDB),
|
|
ok = leveled_cdb:cdb_destroy(CDB)
|
|
end,
|
|
ManifestSlice),
|
|
ok = leveled_cdb:cdb_deletepending(CDBr),
|
|
ok = leveled_cdb:cdb_destroy(CDBr).
|
|
|
|
size_score_test() ->
|
|
KeySizeList =
|
|
[{{1, "INK", "Key1"}, 104},
|
|
{{2, "INK", "Key2"}, 124},
|
|
{{3, "INK", "Key3"}, 144},
|
|
{{4, "INK", "Key4"}, 154},
|
|
{{5, "INK", "Key5", "Subk1"}, 164},
|
|
{{6, "INK", "Key6"}, 174},
|
|
{{7, "INK", "Key7"}, 184}],
|
|
MaxSQN = 6,
|
|
CurrentList = ["Key1", "Key4", "Key5", "Key6"],
|
|
FilterFun = fun(L, K, _SQN) -> lists:member(K, L) end,
|
|
Score = size_comparison_score(KeySizeList, FilterFun, CurrentList, MaxSQN),
|
|
?assertMatch(true, Score > 69.0),
|
|
?assertMatch(true, Score < 70.0).
|
|
|
|
coverage_cheat_test() ->
|
|
{noreply, _State0} = handle_info(timeout, #state{}),
|
|
{ok, _State1} = code_change(null, #state{}, null),
|
|
terminate(error, #state{}).
|
|
|
|
-endif.
|