leveled/src/leveled_cdb.erl

1905 lines
71 KiB
Erlang
Raw Normal View History

%% -------- CDB File Clerk ---------
%%
%% This is a modified version of the cdb module provided by Tom Whitcomb.
%%
%% - https://github.com/thomaswhitcomb/erlang-cdb
%%
%% The CDB module is an implementation of the constant database format
%% described by DJ Bernstein
%%
%% - https://cr.yp.to/cdb.html
%%
%% The primary differences are:
%% - Support for incrementally writing a CDB file while keeping the hash table
%% in memory
%% - The ability to scan a database in blocks of sequence numbers
%% - The applictaion of a CRC chekc by default to all values
%%
%% This module provides functions to create and query a CDB (constant database).
%% A CDB implements a two-level hashtable which provides fast {key,value}
%% lookups that remain fairly constant in speed regardless of the CDBs size.
%%
%% The first level in the CDB occupies the first 255 doublewords in the file.
%% Each doubleword slot contains two values. The first is a file pointer to
%% the primary hashtable (at the end of the file) and the second value is the
%% number of entries in the hashtable. The first level table of 255 entries
%% is indexed with the lower eight bits of the hash of the input key.
%%
%% Following the 255 doublewords are the {key,value} tuples. The tuples are
%% packed in the file without regard to word boundaries. Each {key,value}
%% tuple is represented with a four byte key length, a four byte value length,
%% the actual key value followed by the actual value.
%%
%% Following the {key,value} tuples are the primary hash tables. There are
%% at most 255 hash tables. Each hash table is referenced by one of the 255
%% doubleword entries at the top of the file. For efficiency reasons, each
%% hash table is allocated twice the number of entries that it will need.
%% Each entry in the hash table is a doubleword.
%% The first word is the corresponding hash value and the second word is a
%% file pointer to the actual {key,value} tuple higher in the file.
%%
%%
-module(leveled_cdb).
-behaviour(gen_fsm).
-include("include/leveled.hrl").
-export([init/1,
handle_sync_event/4,
handle_event/3,
handle_info/3,
terminate/3,
code_change/4,
starting/3,
writer/3,
writer/2,
rolling/2,
rolling/3,
reader/3,
reader/2,
delete_pending/3,
delete_pending/2]).
-export([cdb_open_writer/1,
cdb_open_writer/2,
cdb_open_reader/1,
cdb_get/2,
cdb_put/3,
cdb_mput/2,
cdb_getpositions/2,
cdb_directfetch/3,
cdb_lastkey/1,
cdb_firstkey/1,
cdb_filename/1,
cdb_keycheck/2,
cdb_scan/4,
cdb_close/1,
cdb_complete/1,
cdb_roll/1,
cdb_returnhashtable/3,
2016-11-08 22:43:22 +00:00
cdb_checkhashtable/1,
cdb_destroy/1,
cdb_deletepending/1,
cdb_deletepending/3,
hashtable_calc/2]).
-include_lib("eunit/include/eunit.hrl").
-define(DWORD_SIZE, 8).
-define(WORD_SIZE, 4).
-define(MAX_FILE_SIZE, 3221225472).
-define(BINARY_MODE, false).
-define(BASE_POSITION, 2048).
-define(WRITE_OPS, [binary, raw, read, write]).
-define(PENDING_ROLL_WAIT, 30).
-define(DELETE_TIMEOUT, 10000).
-record(state, {hashtree,
last_position :: integer(),
last_key = empty,
hash_index = [] :: list(),
filename :: string(),
handle :: file:fd(),
max_size :: integer(),
binary_mode = false :: boolean(),
delete_point = 0 :: integer(),
inker :: pid(),
deferred_delete = false :: boolean(),
waste_path :: string(),
sync_strategy = none}).
%%%============================================================================
%%% API
%%%============================================================================
cdb_open_writer(Filename) ->
%% No options passed
cdb_open_writer(Filename, #cdb_options{binary_mode=true}).
cdb_open_writer(Filename, Opts) ->
{ok, Pid} = gen_fsm:start(?MODULE, [Opts], []),
ok = gen_fsm:sync_send_event(Pid, {open_writer, Filename}, infinity),
{ok, Pid}.
cdb_open_reader(Filename) ->
cdb_open_reader(Filename, #cdb_options{binary_mode=true}).
cdb_open_reader(Filename, Opts) ->
{ok, Pid} = gen_fsm:start(?MODULE, [Opts], []),
ok = gen_fsm:sync_send_event(Pid, {open_reader, Filename}, infinity),
{ok, Pid}.
cdb_get(Pid, Key) ->
gen_fsm:sync_send_event(Pid, {get_kv, Key}, infinity).
cdb_put(Pid, Key, Value) ->
gen_fsm:sync_send_event(Pid, {put_kv, Key, Value}, infinity).
cdb_mput(Pid, KVList) ->
gen_fsm:sync_send_event(Pid, {mput_kv, KVList}, infinity).
%% SampleSize can be an integer or the atom all
cdb_getpositions(Pid, SampleSize) ->
gen_fsm:sync_send_event(Pid, {get_positions, SampleSize}, infinity).
%% Info can be key_only, key_size (size being the size of the value) or
%% key_value_check (with the check part indicating if the CRC is correct for
%% the value)
cdb_directfetch(Pid, PositionList, Info) ->
gen_fsm:sync_send_event(Pid, {direct_fetch, PositionList, Info}, infinity).
cdb_close(Pid) ->
2016-11-08 22:43:22 +00:00
gen_fsm:sync_send_all_state_event(Pid, cdb_close, infinity).
cdb_complete(Pid) ->
gen_fsm:sync_send_event(Pid, cdb_complete, infinity).
cdb_roll(Pid) ->
gen_fsm:send_event(Pid, cdb_roll).
cdb_returnhashtable(Pid, IndexList, HashTreeBin) ->
gen_fsm:sync_send_event(Pid, {return_hashtable, IndexList, HashTreeBin}, infinity).
2016-11-08 22:43:22 +00:00
cdb_checkhashtable(Pid) ->
gen_fsm:sync_send_event(Pid, check_hashtable).
cdb_destroy(Pid) ->
gen_fsm:send_event(Pid, destroy).
cdb_deletepending(Pid) ->
% Only used in unit tests
cdb_deletepending(Pid, 0, no_poll).
cdb_deletepending(Pid, ManSQN, Inker) ->
gen_fsm:send_event(Pid, {delete_pending, ManSQN, Inker}).
%% cdb_scan returns {LastPosition, Acc}. Use LastPosition as StartPosiiton to
%% continue from that point (calling function has to protect against) double
%% counting.
%%
%% LastPosition could be the atom complete when the last key processed was at
%% the end of the file. last_key must be defined in LoopState.
cdb_scan(Pid, FilterFun, InitAcc, StartPosition) ->
gen_fsm:sync_send_all_state_event(Pid,
{cdb_scan,
FilterFun,
InitAcc,
StartPosition},
infinity).
%% Get the last key to be added to the file (which will have the highest
%% sequence number)
cdb_lastkey(Pid) ->
gen_fsm:sync_send_all_state_event(Pid, cdb_lastkey, infinity).
cdb_firstkey(Pid) ->
gen_fsm:sync_send_all_state_event(Pid, cdb_firstkey, infinity).
%% Get the filename of the database
cdb_filename(Pid) ->
gen_fsm:sync_send_all_state_event(Pid, cdb_filename, infinity).
%% Check to see if the key is probably present, will return either
%% probably or missing. Does not do a definitive check
cdb_keycheck(Pid, Key) ->
gen_fsm:sync_send_event(Pid, {key_check, Key}, infinity).
%%%============================================================================
%%% gen_server callbacks
%%%============================================================================
init([Opts]) ->
MaxSize = case Opts#cdb_options.max_size of
undefined ->
?MAX_FILE_SIZE;
M ->
M
end,
{ok,
starting,
#state{max_size=MaxSize,
binary_mode=Opts#cdb_options.binary_mode,
waste_path=Opts#cdb_options.waste_path,
sync_strategy=Opts#cdb_options.sync_strategy}}.
starting({open_writer, Filename}, _From, State) ->
leveled_log:log("CDB01", [Filename]),
{LastPosition, HashTree, LastKey} = open_active_file(Filename),
WriteOps = set_writeops(State#state.sync_strategy),
{ok, Handle} = file:open(Filename, WriteOps),
{reply, ok, writer, State#state{handle=Handle,
last_position=LastPosition,
last_key=LastKey,
filename=Filename,
hashtree=HashTree}};
starting({open_reader, Filename}, _From, State) ->
leveled_log:log("CDB02", [Filename]),
{Handle, Index, LastKey} = open_for_readonly(Filename),
{reply, ok, reader, State#state{handle=Handle,
last_key=LastKey,
filename=Filename,
hash_index=Index}}.
writer({get_kv, Key}, _From, State) ->
{reply,
get_mem(Key, State#state.handle, State#state.hashtree),
writer,
State};
writer({key_check, Key}, _From, State) ->
{reply,
get_mem(Key, State#state.handle, State#state.hashtree, loose_presence),
writer,
State};
writer({put_kv, Key, Value}, _From, State) ->
Result = put(State#state.handle,
Key,
Value,
{State#state.last_position, State#state.hashtree},
State#state.binary_mode,
State#state.max_size),
case Result of
roll ->
%% Key and value could not be written
{reply, roll, writer, State};
{UpdHandle, NewPosition, HashTree} ->
{reply, ok, writer, State#state{handle=UpdHandle,
last_position=NewPosition,
last_key=Key,
hashtree=HashTree}}
end;
writer({mput_kv, []}, _From, State) ->
{reply, ok, writer, State};
writer({mput_kv, KVList}, _From, State) ->
Result = mput(State#state.handle,
KVList,
{State#state.last_position, State#state.hashtree},
State#state.binary_mode,
State#state.max_size),
case Result of
roll ->
%% Keys and values could not be written
{reply, roll, writer, State};
{UpdHandle, NewPosition, HashTree, LastKey} ->
{reply, ok, writer, State#state{handle=UpdHandle,
last_position=NewPosition,
last_key=LastKey,
hashtree=HashTree}}
end;
writer(cdb_complete, _From, State) ->
NewName = determine_new_filename(State#state.filename),
ok = close_file(State#state.handle,
State#state.hashtree,
State#state.last_position),
ok = rename_for_read(State#state.filename, NewName),
{stop, normal, {ok, NewName}, State}.
writer(cdb_roll, State) ->
ok = leveled_iclerk:clerk_hashtablecalc(State#state.hashtree,
State#state.last_position,
self()),
{next_state, rolling, State}.
rolling({get_kv, Key}, _From, State) ->
{reply,
get_mem(Key, State#state.handle, State#state.hashtree),
rolling,
State};
rolling({key_check, Key}, _From, State) ->
{reply,
get_mem(Key, State#state.handle, State#state.hashtree, loose_presence),
rolling,
State};
rolling({get_positions, _SampleSize}, _From, State) ->
{reply, [], rolling, State};
rolling({return_hashtable, IndexList, HashTreeBin}, _From, State) ->
Handle = State#state.handle,
{ok, BasePos} = file:position(Handle, State#state.last_position),
NewName = determine_new_filename(State#state.filename),
ok = perform_write_hash_tables(Handle, HashTreeBin, BasePos),
ok = write_top_index_table(Handle, BasePos, IndexList),
file:close(Handle),
ok = rename_for_read(State#state.filename, NewName),
leveled_log:log("CDB03", [NewName]),
{NewHandle, Index, LastKey} = open_for_readonly(NewName),
case State#state.deferred_delete of
true ->
{reply, ok, delete_pending, State#state{handle=NewHandle,
last_key=LastKey,
filename=NewName,
hash_index=Index}};
false ->
{reply, ok, reader, State#state{handle=NewHandle,
last_key=LastKey,
filename=NewName,
hash_index=Index}}
end;
2016-11-08 22:43:22 +00:00
rolling(check_hashtable, _From, State) ->
{reply, false, rolling, State}.
rolling({delete_pending, ManSQN, Inker}, State) ->
{next_state,
rolling,
State#state{delete_point=ManSQN, inker=Inker, deferred_delete=true}}.
reader({get_kv, Key}, _From, State) ->
{reply,
get_withcache(State#state.handle, Key, State#state.hash_index),
reader,
State};
reader({key_check, Key}, _From, State) ->
{reply,
get_withcache(State#state.handle,
Key,
State#state.hash_index,
loose_presence),
reader,
State};
reader({get_positions, SampleSize}, _From, State) ->
case SampleSize of
all ->
{reply,
scan_index(State#state.handle,
State#state.hash_index,
{fun scan_index_returnpositions/4, []}),
reader,
State};
_ ->
SeededL = lists:map(fun(X) -> {random:uniform(), X} end,
State#state.hash_index),
SortedL = lists:keysort(1, SeededL),
RandomisedHashIndex = lists:map(fun({_R, X}) -> X end, SortedL),
{reply,
scan_index_forsample(State#state.handle,
RandomisedHashIndex,
fun scan_index_returnpositions/4,
[],
SampleSize),
reader,
State}
end;
reader({direct_fetch, PositionList, Info}, _From, State) ->
H = State#state.handle,
case Info of
key_only ->
KeyList = lists:map(fun(P) ->
extract_key(H, P) end,
PositionList),
{reply, KeyList, reader, State};
key_size ->
KeySizeList = lists:map(fun(P) ->
extract_key_size(H, P) end,
PositionList),
{reply, KeySizeList, reader, State};
key_value_check ->
KVCList = lists:map(fun(P) ->
extract_key_value_check(H, P) end,
PositionList),
{reply, KVCList, reader, State}
end;
reader(cdb_complete, _From, State) ->
ok = file:close(State#state.handle),
2016-11-08 22:43:22 +00:00
{stop, normal, {ok, State#state.filename}, State#state{handle=undefined}};
reader(check_hashtable, _From, State) ->
{reply, true, reader, State}.
reader({delete_pending, 0, no_poll}, State) ->
{next_state,
delete_pending,
State#state{delete_point=0}};
reader({delete_pending, ManSQN, Inker}, State) ->
{next_state,
delete_pending,
State#state{delete_point=ManSQN, inker=Inker},
?DELETE_TIMEOUT}.
delete_pending({get_kv, Key}, _From, State) ->
{reply,
get_withcache(State#state.handle, Key, State#state.hash_index),
delete_pending,
State,
?DELETE_TIMEOUT};
delete_pending({key_check, Key}, _From, State) ->
{reply,
get_withcache(State#state.handle,
Key,
State#state.hash_index,
loose_presence),
delete_pending,
State,
?DELETE_TIMEOUT}.
2016-11-08 00:46:01 +00:00
delete_pending(timeout, State=#state{delete_point=ManSQN}) when ManSQN > 0 ->
case is_process_alive(State#state.inker) of
true ->
case leveled_inker:ink_confirmdelete(State#state.inker, ManSQN) of
true ->
leveled_log:log("CDB04", [State#state.filename, ManSQN]),
{stop, normal, State};
false ->
{next_state,
delete_pending,
State,
?DELETE_TIMEOUT}
end;
false ->
{stop, normal, State}
end;
delete_pending(destroy, State) ->
{stop, normal, State}.
handle_sync_event({cdb_scan, FilterFun, Acc, StartPos},
_From,
StateName,
State) ->
{ok, StartPos0} = case StartPos of
undefined ->
file:position(State#state.handle,
?BASE_POSITION);
StartPos ->
{ok, StartPos}
end,
case check_last_key(State#state.last_key) of
ok ->
{LastPosition, Acc2} = scan_over_file(State#state.handle,
StartPos0,
FilterFun,
Acc,
State#state.last_key),
{reply, {LastPosition, Acc2}, StateName, State};
empty ->
{reply, {eof, Acc}, StateName, State}
end;
handle_sync_event(cdb_lastkey, _From, StateName, State) ->
{reply, State#state.last_key, StateName, State};
handle_sync_event(cdb_firstkey, _From, StateName, State) ->
{ok, EOFPos} = file:position(State#state.handle, eof),
FirstKey = case EOFPos of
?BASE_POSITION ->
empty;
_ ->
extract_key(State#state.handle, ?BASE_POSITION)
end,
{reply, FirstKey, StateName, State};
handle_sync_event(cdb_filename, _From, StateName, State) ->
{reply, State#state.filename, StateName, State};
handle_sync_event(cdb_close, _From, _StateName, State) ->
2016-11-08 22:43:22 +00:00
{stop, normal, ok, State}.
handle_event(_Msg, StateName, State) ->
{next_state, StateName, State}.
handle_info(_Msg, StateName, State) ->
{next_state, StateName, State}.
terminate(Reason, StateName, State) ->
leveled_log:log("CDB05", [State#state.filename, Reason]),
case {State#state.handle, StateName, State#state.waste_path} of
{undefined, _, _} ->
ok;
{Handle, delete_pending, undefined} ->
ok = file:close(Handle),
ok = file:delete(State#state.filename);
{Handle, delete_pending, WasteFP} ->
file:close(Handle),
Components = filename:split(State#state.filename),
NewName = WasteFP ++ lists:last(Components),
file:rename(State#state.filename, NewName);
{Handle, _, _} ->
file:close(Handle)
end.
code_change(_OldVsn, StateName, State, _Extra) ->
{ok, StateName, State}.
%%%============================================================================
%%% Internal functions
%%%============================================================================
%% Assumption is that sync should be used - it is a transaction log.
%%
%% When running the Riak-specific version on Erlang 16, it sets the sync flag
%% using the o_sync keyword (as it is in posix). If using a non-Basho OTP 16
%% sync is not possible so none will need to be passed. This is not
%% recommended, but is allowed here to make it simpler to test against
%% off-the-shelf OTP 16
set_writeops(SyncStrategy) ->
case SyncStrategy of
sync ->
[sync | ?WRITE_OPS];
riak_sync ->
[o_sync | ?WRITE_OPS];
none ->
?WRITE_OPS
end.
%% from_dict(FileName,ListOfKeyValueTuples)
%% Given a filename and a dictionary, create a cdb
%% using the key value pairs from the dict.
from_dict(FileName,Dict) ->
KeyValueList = dict:to_list(Dict),
create(FileName, KeyValueList).
%%
%% create(FileName,ListOfKeyValueTuples) -> ok
%% Given a filename and a list of {key,value} tuples,
%% this function creates a CDB
%%
create(FileName,KeyValueList) ->
{ok, Handle} = file:open(FileName, ?WRITE_OPS),
{ok, _} = file:position(Handle, {bof, ?BASE_POSITION}),
{BasePos, HashTree} = write_key_value_pairs(Handle, KeyValueList),
close_file(Handle, HashTree, BasePos).
%% Open an active file - one for which it is assumed the hash tables have not
%% yet been written
%%
%% Needs to scan over file to incrementally produce the hash list, starting at
%% the end of the top index table.
%%
%% Should return a dictionary keyed by index containing a list of {Hash, Pos}
%% tuples as the write_key_value_pairs function, and the current position, and
%% the file handle
open_active_file(FileName) when is_list(FileName) ->
{ok, Handle} = file:open(FileName, ?WRITE_OPS),
{ok, Position} = file:position(Handle, {bof, 256*?DWORD_SIZE}),
{LastPosition, {HashTree, LastKey}} = startup_scan_over_file(Handle,
Position),
case file:position(Handle, eof) of
{ok, LastPosition} ->
ok = file:close(Handle);
{ok, EndPosition} ->
leveled_log:log("CDB06", [LastPosition, EndPosition]),
{ok, _LastPosition} = file:position(Handle, LastPosition),
ok = file:truncate(Handle),
ok = file:close(Handle)
end,
{LastPosition, HashTree, LastKey}.
%% put(Handle, Key, Value, {LastPosition, HashDict}) -> {NewPosition, KeyDict}
%% Append to an active file a new key/value pair returning an updated
%% dictionary of Keys and positions. Returns an updated Position
%%
put(FileName,
Key,
Value,
{LastPosition, HashTree},
BinaryMode,
MaxSize) when is_list(FileName) ->
{ok, Handle} = file:open(FileName, ?WRITE_OPS),
put(Handle, Key, Value, {LastPosition, HashTree}, BinaryMode, MaxSize);
put(Handle, Key, Value, {LastPosition, HashTree}, BinaryMode, MaxSize) ->
Bin = key_value_to_record({Key, Value}, BinaryMode),
PotentialNewSize = LastPosition + byte_size(Bin),
if
PotentialNewSize > MaxSize ->
roll;
true ->
ok = file:pwrite(Handle, LastPosition, Bin),
{Handle,
PotentialNewSize,
put_hashtree(Key, LastPosition, HashTree)}
end.
mput(Handle, KVList, {LastPosition, HashTree0}, BinaryMode, MaxSize) ->
{KPList, Bin, LastKey} = multi_key_value_to_record(KVList,
BinaryMode,
LastPosition),
PotentialNewSize = LastPosition + byte_size(Bin),
if
PotentialNewSize > MaxSize ->
roll;
true ->
ok = file:pwrite(Handle, LastPosition, Bin),
HashTree1 = lists:foldl(fun({K, P}, Acc) ->
put_hashtree(K, P, Acc)
end,
HashTree0,
KPList),
{Handle, PotentialNewSize, HashTree1, LastKey}
end.
%% Should not be used for non-test PUTs by the inker - as the Max File Size
%% should be taken from the startup options not the default
put(FileName, Key, Value, {LastPosition, HashTree}) ->
put(FileName, Key, Value, {LastPosition, HashTree},
?BINARY_MODE, ?MAX_FILE_SIZE).
%%
%% get(FileName,Key) -> {key,value}
%% Given a filename and a key, returns a key and value tuple.
%%
get_withcache(Handle, Key, Cache) ->
get(Handle, Key, Cache, true).
get_withcache(Handle, Key, Cache, QuickCheck) ->
get(Handle, Key, Cache, QuickCheck).
get(FileNameOrHandle, Key) ->
get(FileNameOrHandle, Key, no_cache, true).
get(FileName, Key, Cache, QuickCheck) when is_list(FileName) ->
{ok, Handle} = file:open(FileName,[binary, raw, read]),
get(Handle, Key, Cache, QuickCheck);
get(Handle, Key, Cache, QuickCheck) when is_tuple(Handle) ->
Hash = hash(Key),
Index = hash_to_index(Hash),
{HashTable, Count} = get_index(Handle, Index, Cache),
% If the count is 0 for that index - key must be missing
case Count of
0 ->
missing;
_ ->
% Get starting slot in hashtable
{ok, FirstHashPosition} = file:position(Handle, {bof, HashTable}),
Slot = hash_to_slot(Hash, Count),
{ok, _} = file:position(Handle, {cur, Slot * ?DWORD_SIZE}),
LastHashPosition = HashTable + ((Count-1) * ?DWORD_SIZE),
LocList = lists:seq(FirstHashPosition,
LastHashPosition,
?DWORD_SIZE),
% Split list around starting slot.
{L1, L2} = lists:split(Slot, LocList),
search_hash_table(Handle,
lists:append(L2, L1),
Hash,
Key,
QuickCheck)
end.
get_index(Handle, Index, no_cache) ->
{ok,_} = file:position(Handle, {bof, ?DWORD_SIZE * Index}),
% Get location of hashtable and number of entries in the hash
read_next_2_integers(Handle);
get_index(_Handle, Index, Cache) ->
{Index, {Pointer, Count}} = lists:keyfind(Index, 1, Cache),
{Pointer, Count}.
%% Get a Key/Value pair from an active CDB file (with no hash table written)
%% This requires a key dictionary to be passed in (mapping keys to positions)
%% Will return {Key, Value} or missing
get_mem(Key, FNOrHandle, HashTree) ->
get_mem(Key, FNOrHandle, HashTree, true).
get_mem(Key, Filename, HashTree, QuickCheck) when is_list(Filename) ->
{ok, Handle} = file:open(Filename, [binary, raw, read]),
get_mem(Key, Handle, HashTree, QuickCheck);
get_mem(Key, Handle, HashTree, QuickCheck) ->
ListToCheck = get_hashtree(Key, HashTree),
case {QuickCheck, ListToCheck} of
{loose_presence, []} ->
missing;
{loose_presence, _L} ->
probably;
_ ->
extract_kvpair(Handle, ListToCheck, Key)
end.
%% Get the next key at a position in the file (or the first key if no position
%% is passed). Will return both a key and the next position
get_nextkey(Filename) when is_list(Filename) ->
{ok, Handle} = file:open(Filename, [binary, raw, read]),
get_nextkey(Handle);
get_nextkey(Handle) ->
{ok, _} = file:position(Handle, bof),
{FirstHashPosition, _} = read_next_2_integers(Handle),
get_nextkey(Handle, {256 * ?DWORD_SIZE, FirstHashPosition}).
get_nextkey(Handle, {Position, FirstHashPosition}) ->
{ok, Position} = file:position(Handle, Position),
case read_next_2_integers(Handle) of
{KeyLength, ValueLength} ->
NextKey = read_next_term(Handle, KeyLength),
NextPosition = Position + KeyLength + ValueLength + ?DWORD_SIZE,
case NextPosition of
FirstHashPosition ->
{NextKey, nomorekeys};
_ ->
{NextKey, Handle, {NextPosition, FirstHashPosition}}
end;
eof ->
nomorekeys
end.
hashtable_calc(HashTree, StartPos) ->
Seq = lists:seq(0, 255),
SWC = os:timestamp(),
{IndexList, HashTreeBin} = write_hash_tables(Seq,
HashTree,
StartPos,
[],
<<>>),
leveled_log:log_timer("CDB07", [], SWC),
{IndexList, HashTreeBin}.
%%%%%%%%%%%%%%%%%%%%
%% Internal functions
%%%%%%%%%%%%%%%%%%%%
determine_new_filename(Filename) ->
filename:rootname(Filename, ".pnd") ++ ".cdb".
rename_for_read(Filename, NewName) ->
%% Rename file
leveled_log:log("CDB08", [Filename, NewName, filelib:is_file(NewName)]),
file:rename(Filename, NewName).
open_for_readonly(Filename) ->
{ok, Handle} = file:open(Filename, [binary, raw, read]),
Index = load_index(Handle),
LastKey = find_lastkey(Handle, Index),
{Handle, Index, LastKey}.
load_index(Handle) ->
Index = lists:seq(0, 255),
lists:map(fun(X) ->
file:position(Handle, {bof, ?DWORD_SIZE * X}),
{HashTablePos, Count} = read_next_2_integers(Handle),
{X, {HashTablePos, Count}} end,
Index).
%% Function to find the LastKey in the file
find_lastkey(Handle, IndexCache) ->
{LastPosition, TotalKeys} = scan_index(Handle,
IndexCache,
{fun scan_index_findlast/4,
{0, 0}}),
case TotalKeys of
0 ->
empty;
_ ->
{ok, _} = file:position(Handle, LastPosition),
{KeyLength, _ValueLength} = read_next_2_integers(Handle),
read_next_term(Handle, KeyLength)
end.
scan_index(Handle, IndexCache, {ScanFun, InitAcc}) ->
lists:foldl(fun({_X, {Pos, Count}}, Acc) ->
ScanFun(Handle, Pos, Count, Acc)
end,
InitAcc,
IndexCache).
scan_index_forsample(_Handle, [], _ScanFun, Acc, SampleSize) ->
lists:sublist(Acc, SampleSize);
scan_index_forsample(Handle, [CacheEntry|Tail], ScanFun, Acc, SampleSize) ->
case length(Acc) of
L when L >= SampleSize ->
lists:sublist(Acc, SampleSize);
_ ->
{_X, {Pos, Count}} = CacheEntry,
scan_index_forsample(Handle,
Tail,
ScanFun,
ScanFun(Handle, Pos, Count, Acc),
SampleSize)
end.
scan_index_findlast(Handle, Position, Count, {LastPosition, TotalKeys}) ->
{ok, _} = file:position(Handle, Position),
MaxPos = lists:foldl(fun({_Hash, HPos}, MaxPos) -> max(HPos, MaxPos) end,
LastPosition,
read_next_n_integerpairs(Handle, Count)),
{MaxPos, TotalKeys + Count}.
scan_index_returnpositions(Handle, Position, Count, PosList0) ->
{ok, _} = file:position(Handle, Position),
lists:foldl(fun({Hash, HPosition}, PosList) ->
case Hash of
0 -> PosList;
_ -> PosList ++ [HPosition]
end end,
PosList0,
read_next_n_integerpairs(Handle, Count)).
%% Take an active file and write the hash details necessary to close that
%% file and roll a new active file if requested.
%%
%% Base Pos should be at the end of the KV pairs written (the position for)
%% the hash tables
close_file(Handle, HashTree, BasePos) ->
{ok, BasePos} = file:position(Handle, BasePos),
IndexList = write_hash_tables(Handle, HashTree),
ok = write_top_index_table(Handle, BasePos, IndexList),
file:close(Handle).
%% Fetch a list of positions by passing a key to the HashTree
get_hashtree(Key, HashTree) ->
Hash = hash(Key),
Index = hash_to_index(Hash),
Tree = array:get(Index, HashTree),
case gb_trees:lookup(Hash, Tree) of
{value, List} ->
List;
_ ->
[]
end.
%% Add to hash tree - this is an array of 256 gb_trees that contains the Hash
%% and position of objects which have been added to an open CDB file
put_hashtree(Key, Position, HashTree) ->
Hash = hash(Key),
Index = hash_to_index(Hash),
Tree = array:get(Index, HashTree),
case gb_trees:lookup(Hash, Tree) of
none ->
array:set(Index, gb_trees:insert(Hash, [Position], Tree), HashTree);
{value, L} ->
array:set(Index, gb_trees:update(Hash, [Position|L], Tree), HashTree)
end.
%% Function to extract a Key-Value pair given a file handle and a position
%% Will confirm that the key matches and do a CRC check
extract_kvpair(_, [], _) ->
missing;
extract_kvpair(Handle, [Position|Rest], Key) ->
{ok, _} = file:position(Handle, Position),
{KeyLength, ValueLength} = read_next_2_integers(Handle),
case safe_read_next_term(Handle, KeyLength) of
Key -> % If same key as passed in, then found!
case read_next_term(Handle, ValueLength, crc) of
{false, _} ->
crc_wonky;
{_, Value} ->
{Key,Value}
end;
_ ->
extract_kvpair(Handle, Rest, Key)
end.
extract_key(Handle, Position) ->
{ok, _} = file:position(Handle, Position),
{KeyLength, _ValueLength} = read_next_2_integers(Handle),
read_next_term(Handle, KeyLength).
extract_key_size(Handle, Position) ->
{ok, _} = file:position(Handle, Position),
{KeyLength, ValueLength} = read_next_2_integers(Handle),
{read_next_term(Handle, KeyLength), ValueLength}.
extract_key_value_check(Handle, Position) ->
{ok, _} = file:position(Handle, Position),
{KeyLength, ValueLength} = read_next_2_integers(Handle),
K = read_next_term(Handle, KeyLength),
{Check, V} = read_next_term(Handle, ValueLength, crc),
{K, V, Check}.
%% Scan through the file until there is a failure to crc check an input, and
%% at that point return the position and the key dictionary scanned so far
startup_scan_over_file(Handle, Position) ->
HashTree = array:new(256, {default, gb_trees:empty()}),
scan_over_file(Handle,
Position,
fun startup_filter/5,
{HashTree, empty},
empty).
%% Specific filter to be used at startup to build a hashtree for an incomplete
%% cdb file, and returns at the end the hashtree and the final Key seen in the
%% journal
2016-11-09 16:35:13 +00:00
startup_filter(Key, ValueAsBin, Position, {Hashtree, _LastKey}, _ExtractFun) ->
case crccheck_value(ValueAsBin) of
true ->
2016-11-09 16:35:13 +00:00
% This function is preceeded by a "safe read" of the key and value
% and so the crccheck should always be true, as a failed check
% should not reach this stage
{loop, {put_hashtree(Key, Position, Hashtree), Key}}
end.
%% Scan for key changes - scan over file returning applying FilterFun
%% The FilterFun should accept as input:
%% - Key, ValueBin, Position, Accumulator, Fun (to extract values from Binary)
%% -> outputting a new Accumulator and a loop|stop instruction as a tuple
%% i.e. {loop, Acc} or {stop, Acc}
scan_over_file(Handle, Position, FilterFun, Output, LastKey) ->
case saferead_keyvalue(Handle) of
false ->
leveled_log:log("CDB09", [Position]),
{Position, Output};
{Key, ValueAsBin, KeyLength, ValueLength} ->
NewPosition = case Key of
LastKey ->
eof;
_ ->
Position + KeyLength + ValueLength
+ ?DWORD_SIZE
end,
case FilterFun(Key,
ValueAsBin,
Position,
Output,
fun extract_valueandsize/1) of
{stop, UpdOutput} ->
{Position, UpdOutput};
{loop, UpdOutput} ->
case NewPosition of
eof ->
{eof, UpdOutput};
_ ->
scan_over_file(Handle,
NewPosition,
FilterFun,
UpdOutput,
LastKey)
end
end
end.
%% Confirm that the last key has been defined and set to a non-default value
check_last_key(LastKey) ->
case LastKey of
empty -> empty;
_ -> ok
end.
%% Read the Key/Value at this point, returning {ok, Key, Value}
%% catch expected exceptions associated with file corruption (or end) and
%% return eof
saferead_keyvalue(Handle) ->
case read_next_2_integers(Handle) of
eof ->
false;
{KeyL, ValueL} ->
case safe_read_next_term(Handle, KeyL) of
{error, _} ->
false;
eof ->
false;
false ->
false;
Key ->
case file:read(Handle, ValueL) of
eof ->
false;
{ok, Value} ->
case crccheck_value(Value) of
true ->
{Key, Value, KeyL, ValueL};
false ->
false
end
end
end
end.
safe_read_next_term(Handle, Length) ->
try read_next_term(Handle, Length) of
Term ->
Term
catch
error:badarg ->
false
end.
%% The first four bytes of the value are the crc check
crccheck_value(Value) when byte_size(Value) >4 ->
<< Hash:32/integer, Tail/bitstring>> = Value,
case calc_crc(Tail) of
Hash ->
true;
_ ->
leveled_log:log("CDB10", []),
false
end;
crccheck_value(_) ->
leveled_log:log("CDB11", []),
false.
%% Run a crc check filling out any values which don't fit on byte boundary
calc_crc(Value) ->
case bit_size(Value) rem 8 of
0 ->
erlang:crc32(Value);
N ->
M = 8 - N,
erlang:crc32(<<Value/bitstring,0:M>>)
end.
read_next_term(Handle, Length) ->
case file:read(Handle, Length) of
{ok, Bin} ->
binary_to_term(Bin);
ReadError ->
ReadError
end.
%% Read next string where the string has a CRC prepended - stripping the crc
%% and checking if requested
read_next_term(Handle, Length, crc) ->
{ok, <<CRC:32/integer, Bin/binary>>} = file:read(Handle, Length),
case calc_crc(Bin) of
CRC ->
{true, binary_to_term(Bin)};
_ ->
{false, crc_wonky}
end.
%% Extract value and size from binary containing CRC
extract_valueandsize(ValueAsBin) ->
<<_CRC:32/integer, Bin/binary>> = ValueAsBin,
{binary_to_term(Bin), byte_size(Bin)}.
%% Used for reading lengths
%% Note that the endian_flip is required to make the file format compatible
%% with CDB
read_next_2_integers(Handle) ->
case file:read(Handle,?DWORD_SIZE) of
{ok, <<Int1:32,Int2:32>>} ->
{endian_flip(Int1), endian_flip(Int2)};
ReadError ->
ReadError
end.
read_next_n_integerpairs(Handle, NumberOfPairs) ->
{ok, Block} = file:read(Handle, ?DWORD_SIZE * NumberOfPairs),
read_integerpairs(Block, []).
read_integerpairs(<<>>, Pairs) ->
Pairs;
read_integerpairs(<<Int1:32, Int2:32, Rest/binary>>, Pairs) ->
read_integerpairs(<<Rest/binary>>,
Pairs ++ [{endian_flip(Int1),
endian_flip(Int2)}]).
%% Seach the hash table for the matching hash and key. Be prepared for
%% multiple keys to have the same hash value.
%%
%% There are three possible values of CRCCheck:
%% true - check the CRC before returning key & value
%% false - don't check the CRC before returning key & value
%% loose_presence - confirm that the hash of the key is present
search_hash_table(_Handle, [], _Hash, _Key, _QuickCheck) ->
missing;
search_hash_table(Handle, [Entry|RestOfEntries], Hash, Key, QuickCheck) ->
{ok, _} = file:position(Handle, Entry),
{StoredHash, DataLoc} = read_next_2_integers(Handle),
case StoredHash of
Hash ->
KV = case QuickCheck of
loose_presence ->
probably;
_ ->
extract_kvpair(Handle, [DataLoc], Key)
end,
case KV of
missing ->
search_hash_table(Handle,
RestOfEntries,
Hash,
Key,
QuickCheck);
_ ->
KV
end;
%0 ->
% % Hash is 0 so key must be missing as 0 found before Hash matched
% missing;
_ ->
search_hash_table(Handle, RestOfEntries, Hash, Key, QuickCheck)
end.
% Write Key and Value tuples into the CDB. Each tuple consists of a
% 4 byte key length, a 4 byte value length, the actual key followed
% by the value.
%
% Returns a dictionary that is keyed by
% the least significant 8 bits of each hash with the
% values being a list of the hash and the position of the
% key/value binary in the file.
write_key_value_pairs(Handle, KeyValueList) ->
{ok, Position} = file:position(Handle, cur),
HashTree = array:new(256, {default, gb_trees:empty()}),
write_key_value_pairs(Handle, KeyValueList, {Position, HashTree}).
write_key_value_pairs(_, [], Acc) ->
Acc;
write_key_value_pairs(Handle, [HeadPair|TailList], Acc) ->
{Key, Value} = HeadPair,
{Handle, NewPosition, HashTree} = put(Handle, Key, Value, Acc),
write_key_value_pairs(Handle, TailList, {NewPosition, HashTree}).
%% Write the actual hashtables at the bottom of the file. Each hash table
%% entry is a doubleword in length. The first word is the hash value
%% corresponding to a key and the second word is a file pointer to the
%% corresponding {key,value} tuple.
write_hash_tables(Handle, HashTree) ->
{ok, StartPos} = file:position(Handle, cur),
{IndexList, HashTreeBin} = hashtable_calc(HashTree, StartPos),
ok = perform_write_hash_tables(Handle, HashTreeBin, StartPos),
IndexList.
perform_write_hash_tables(Handle, HashTreeBin, StartPos) ->
SWW = os:timestamp(),
ok = file:write(Handle, HashTreeBin),
{ok, EndPos} = file:position(Handle, cur),
ok = file:advise(Handle, StartPos, EndPos - StartPos, will_need),
leveled_log:log_timer("CDB12", [], SWW),
ok.
write_hash_tables([], _HashTree, _CurrPos, IndexList, HashTreeBin) ->
{IndexList, HashTreeBin};
write_hash_tables([Index|Rest], HashTree, CurrPos, IndexList, HashTreeBin) ->
Tree = array:get(Index, HashTree),
case gb_trees:keys(Tree) of
[] ->
write_hash_tables(Rest, HashTree, CurrPos, IndexList, HashTreeBin);
_ ->
HashList = gb_trees:to_list(Tree),
BinList = build_binaryhashlist(HashList, []),
IndexLength = length(BinList) * 2,
SlotList = lists:duplicate(IndexLength, <<0:32, 0:32>>),
Fn = fun({Hash, Binary}, AccSlotList) ->
Slot1 = find_open_slot(AccSlotList, Hash),
{L1, [<<0:32, 0:32>>|L2]} = lists:split(Slot1, AccSlotList),
lists:append(L1, [Binary|L2])
end,
NewSlotList = lists:foldl(Fn, SlotList, BinList),
NewSlotBin = lists:foldl(fun(X, Acc) ->
<<Acc/binary, X/binary>> end,
HashTreeBin,
NewSlotList),
write_hash_tables(Rest,
HashTree,
CurrPos + length(NewSlotList) * ?DWORD_SIZE,
[{Index, CurrPos, IndexLength}|IndexList],
NewSlotBin)
end.
%% The list created from the original HashTree may have duplicate positions
%% e.g. {Key, [Value1, Value2]}. Before any writing is done it is necessary
%% to know the actual number of hashes - or the Slot may not be sized correctly
%%
%% This function creates {Hash, Binary} pairs on a list where there is a unique
%% entry for eveyr Key/Value
build_binaryhashlist([], BinList) ->
BinList;
build_binaryhashlist([{Hash, [Position|TailP]}|TailKV], BinList) ->
HashLE = endian_flip(Hash),
PosLE = endian_flip(Position),
NewBin = <<HashLE:32, PosLE:32>>,
case TailP of
[] ->
build_binaryhashlist(TailKV,
[{Hash, NewBin}|BinList]);
_ ->
build_binaryhashlist([{Hash, TailP}|TailKV],
[{Hash, NewBin}|BinList])
end.
%% Slot is zero based because it comes from a REM
find_open_slot(List, Hash) ->
Len = length(List),
Slot = hash_to_slot(Hash, Len),
Seq = lists:seq(1, Len),
{CL1, CL2} = lists:split(Slot, Seq),
{L1, L2} = lists:split(Slot, List),
find_open_slot1(lists:append(CL2, CL1), lists:append(L2, L1)).
find_open_slot1([Slot|_RestOfSlots], [<<0:32,0:32>>|_RestOfEntries]) ->
Slot - 1;
find_open_slot1([_|RestOfSlots], [_|RestOfEntries]) ->
find_open_slot1(RestOfSlots, RestOfEntries).
%% Write the top most 255 doubleword entries. First word is the
%% file pointer to a hashtable and the second word is the number of entries
%% in the hash table
%% The List passed in should be made up of {Index, Position, Count} tuples
write_top_index_table(Handle, BasePos, List) ->
% fold function to find any missing index tuples, and add one a replacement
% in this case with a count of 0. Also orders the list by index
FnMakeIndex = fun(I) ->
case lists:keysearch(I, 1, List) of
{value, Tuple} ->
Tuple;
false ->
{I, BasePos, 0}
end
end,
% Fold function to write the index entries
FnWriteIndex = fun({_Index, Pos, Count}, {AccBin, CurrPos}) ->
case Count == 0 of
true ->
PosLE = endian_flip(CurrPos),
NextPos = CurrPos;
false ->
PosLE = endian_flip(Pos),
NextPos = Pos + (Count * ?DWORD_SIZE)
end,
CountLE = endian_flip(Count),
{<<AccBin/binary, PosLE:32, CountLE:32>>, NextPos}
end,
Seq = lists:seq(0, 255),
CompleteList = lists:keysort(1, lists:map(FnMakeIndex, Seq)),
{IndexBin, _Pos} = lists:foldl(FnWriteIndex,
{<<>>, BasePos},
CompleteList),
{ok, _} = file:position(Handle, 0),
ok = file:write(Handle, IndexBin),
ok = file:advise(Handle, 0, ?DWORD_SIZE * 256, will_need),
ok.
%% To make this compatible with original Bernstein format this endian flip
%% and also the use of the standard hash function required.
%%
%% Hash function contains mysterious constants, some explanation here as to
%% what they are -
%% http://stackoverflow.com/ ++
%% questions/10696223/reason-for-5381-number-in-djb-hash-function
endian_flip(Int) ->
<<X:32/unsigned-little-integer>> = <<Int:32>>,
X.
hash(Key) ->
BK = term_to_binary(Key),
H = 5381,
hash1(H, BK) band 16#FFFFFFFF.
hash1(H, <<>>) ->
H;
hash1(H, <<B:8/integer, Rest/bytes>>) ->
H1 = H * 33,
H2 = H1 bxor B,
hash1(H2, Rest).
% Get the least significant 8 bits from the hash.
hash_to_index(Hash) ->
Hash band 255.
hash_to_slot(Hash, L) ->
(Hash bsr 8) rem L.
%% Create a binary of the LengthKeyLengthValue, adding a CRC check
%% at the front of the value
key_value_to_record({Key, Value}, BinaryMode) ->
BK = term_to_binary(Key),
BV = case BinaryMode of
true ->
Value;
false ->
term_to_binary(Value)
end,
LK = byte_size(BK),
LV = byte_size(BV),
LK_FL = endian_flip(LK),
LV_FL = endian_flip(LV + 4),
CRC = calc_crc(BV),
<<LK_FL:32, LV_FL:32, BK:LK/binary, CRC:32/integer, BV:LV/binary>>.
multi_key_value_to_record(KVList, BinaryMode, LastPosition) ->
lists:foldl(fun({K, V}, {KPosL, Bin, _LK}) ->
Bin0 = key_value_to_record({K, V}, BinaryMode),
{[{K, byte_size(Bin) + LastPosition}|KPosL],
<<Bin/binary, Bin0/binary>>,
K} end,
{[], <<>>, empty},
KVList).
%%%%%%%%%%%%%%%%
% T E S T
%%%%%%%%%%%%%%%
-ifdef(TEST).
%%
%% dump(FileName) -> List
%% Given a file name, this function returns a list
%% of {key,value} tuples from the CDB.
%%
dump(FileName) ->
{ok, Handle} = file:open(FileName, [binary, raw, read]),
Fn = fun(Index, Acc) ->
{ok, _} = file:position(Handle, ?DWORD_SIZE * Index),
{_, Count} = read_next_2_integers(Handle),
Acc + Count
end,
NumberOfPairs = lists:foldl(Fn, 0, lists:seq(0,255)) bsr 1,
io:format("Count of keys in db is ~w~n", [NumberOfPairs]),
{ok, _} = file:position(Handle, {bof, 2048}),
Fn1 = fun(_I,Acc) ->
{KL,VL} = read_next_2_integers(Handle),
Key = read_next_term(Handle, KL),
case read_next_term(Handle, VL, crc) of
{_, Value} ->
{ok, CurrLoc} = file:position(Handle, cur),
2016-11-08 23:07:03 +00:00
{Key,Value} = get(Handle, Key)
end,
{ok, _} = file:position(Handle, CurrLoc),
2016-11-08 23:07:03 +00:00
[{Key,Value} | Acc]
end,
lists:foldr(Fn1, [], lists:seq(0, NumberOfPairs-1)).
%%
%% to_dict(FileName)
%% Given a filename returns a dict containing
%% the key value pairs from the dict.
%%
%% @spec to_dict(filename()) -> dictionary()
%% where
%% filename() = string(),
%% dictionary() = dict()
%%
to_dict(FileName) ->
KeyValueList = dump(FileName),
dict:from_list(KeyValueList).
write_key_value_pairs_1_test() ->
{ok,Handle} = file:open("../test/test.cdb",[write]),
{_, HashTree} = write_key_value_pairs(Handle,
[{"key1","value1"},
{"key2","value2"}]),
Hash1 = hash("key1"),
Index1 = hash_to_index(Hash1),
Hash2 = hash("key2"),
Index2 = hash_to_index(Hash2),
R0 = array:new(256, {default, gb_trees:empty()}),
R1 = array:set(Index1,
gb_trees:insert(Hash1,
[0],
array:get(Index1, R0)),
R0),
R2 = array:set(Index2,
gb_trees:insert(Hash2,
[30],
array:get(Index2, R1)),
R1),
io:format("HashTree is ~w~n", [HashTree]),
io:format("Expected HashTree is ~w~n", [R2]),
?assertMatch(R2, HashTree),
ok = file:delete("../test/test.cdb").
write_hash_tables_1_test() ->
{ok, Handle} = file:open("../test/testx.cdb", [write]),
R0 = array:new(256, {default, gb_trees:empty()}),
R1 = array:set(64,
gb_trees:insert(6383014720,
[18],
array:get(64, R0)),
R0),
R2 = array:set(67,
gb_trees:insert(6383014723,
[0],
array:get(67, R1)),
R1),
Result = write_hash_tables(Handle, R2),
io:format("write hash tables result of ~w ~n", [Result]),
?assertMatch(Result,[{67,16,2},{64,0,2}]),
ok = file:delete("../test/testx.cdb").
find_open_slot_1_test() ->
List = [<<1:32,1:32>>,<<0:32,0:32>>,<<1:32,1:32>>,<<1:32,1:32>>],
Slot = find_open_slot(List,0),
?assertMatch(Slot,1).
find_open_slot_2_test() ->
List = [<<0:32,0:32>>,<<0:32,0:32>>,<<1:32,1:32>>,<<1:32,1:32>>],
Slot = find_open_slot(List,0),
?assertMatch(Slot,0).
find_open_slot_3_test() ->
List = [<<1:32,1:32>>,<<1:32,1:32>>,<<1:32,1:32>>,<<0:32,0:32>>],
Slot = find_open_slot(List,2),
?assertMatch(Slot,3).
find_open_slot_4_test() ->
List = [<<0:32,0:32>>,<<1:32,1:32>>,<<1:32,1:32>>,<<1:32,1:32>>],
Slot = find_open_slot(List,1),
?assertMatch(Slot,0).
find_open_slot_5_test() ->
List = [<<1:32,1:32>>,<<1:32,1:32>>,<<0:32,0:32>>,<<1:32,1:32>>],
Slot = find_open_slot(List,3),
?assertMatch(Slot,2).
full_1_test() ->
List1 = lists:sort([{"key1","value1"},{"key2","value2"}]),
create("../test/simple.cdb",
lists:sort([{"key1","value1"},{"key2","value2"}])),
List2 = lists:sort(dump("../test/simple.cdb")),
?assertMatch(List1,List2),
ok = file:delete("../test/simple.cdb").
full_2_test() ->
List1 = lists:sort([{lists:flatten(io_lib:format("~s~p",[Prefix,Plug])),
lists:flatten(io_lib:format("value~p",[Plug]))}
|| Plug <- lists:seq(1,200),
Prefix <- ["dsd","so39ds","oe9%#*(","020dkslsldclsldowlslf%$#",
"tiep4||","qweq"]]),
create("../test/full.cdb",List1),
List2 = lists:sort(dump("../test/full.cdb")),
?assertMatch(List1,List2),
ok = file:delete("../test/full.cdb").
from_dict_test() ->
D = dict:new(),
D1 = dict:store("a","b",D),
D2 = dict:store("c","d",D1),
ok = from_dict("../test/from_dict_test.cdb",D2),
io:format("Store created ~n", []),
KVP = lists:sort(dump("../test/from_dict_test.cdb")),
D3 = lists:sort(dict:to_list(D2)),
io:format("KVP is ~w~n", [KVP]),
io:format("D3 is ~w~n", [D3]),
?assertMatch(KVP, D3),
ok = file:delete("../test/from_dict_test.cdb").
to_dict_test() ->
D = dict:new(),
D1 = dict:store("a","b",D),
D2 = dict:store("c","d",D1),
ok = from_dict("../test/from_dict_test1.cdb",D2),
Dict = to_dict("../test/from_dict_test1.cdb"),
D3 = lists:sort(dict:to_list(D2)),
D4 = lists:sort(dict:to_list(Dict)),
?assertMatch(D4,D3),
ok = file:delete("../test/from_dict_test1.cdb").
crccheck_emptyvalue_test() ->
?assertMatch(false, crccheck_value(<<>>)).
crccheck_shortvalue_test() ->
Value = <<128,128,32>>,
?assertMatch(false, crccheck_value(Value)).
crccheck_justshortvalue_test() ->
Value = <<128,128,32,64>>,
?assertMatch(false, crccheck_value(Value)).
crccheck_correctvalue_test() ->
Value = term_to_binary("some text as value"),
Hash = erlang:crc32(Value),
ValueOnDisk = <<Hash:32/integer, Value/binary>>,
?assertMatch(true, crccheck_value(ValueOnDisk)).
crccheck_wronghash_test() ->
Value = term_to_binary("some text as value"),
Hash = erlang:crc32(Value) + 1,
ValueOnDisk = <<Hash:32/integer, Value/binary>>,
?assertMatch(false, crccheck_value(ValueOnDisk)).
crccheck_truncatedvalue_test() ->
Value = term_to_binary("some text as value"),
Hash = erlang:crc32(Value),
ValueOnDisk = <<Hash:32/integer, Value/binary>>,
Size = bit_size(ValueOnDisk) - 1,
<<TruncatedValue:Size/bitstring, _/bitstring>> = ValueOnDisk,
?assertMatch(false, crccheck_value(TruncatedValue)).
activewrite_singlewrite_test() ->
Key = "0002",
Value = "some text as new value",
InitialD = dict:new(),
InitialD1 = dict:store("0001", "Initial value", InitialD),
ok = from_dict("../test/test_mem.cdb", InitialD1),
io:format("New db file created ~n", []),
{LastPosition, KeyDict, _} = open_active_file("../test/test_mem.cdb"),
io:format("File opened as new active file "
"with LastPosition=~w ~n", [LastPosition]),
{_, _, UpdKeyDict} = put("../test/test_mem.cdb",
Key, Value,
{LastPosition, KeyDict}),
io:format("New key and value added to active file ~n", []),
?assertMatch({Key, Value},
get_mem(Key, "../test/test_mem.cdb",
UpdKeyDict)),
?assertMatch(probably,
get_mem(Key, "../test/test_mem.cdb",
UpdKeyDict,
loose_presence)),
?assertMatch(missing,
get_mem("not_present", "../test/test_mem.cdb",
UpdKeyDict,
loose_presence)),
ok = file:delete("../test/test_mem.cdb").
search_hash_table_findinslot_test() ->
Key1 = "key1", % this is in slot 3 if count is 8
D = dict:from_list([{Key1, "value1"}, {"K2", "V2"}, {"K3", "V3"},
{"K4", "V4"}, {"K5", "V5"}, {"K6", "V6"}, {"K7", "V7"},
{"K8", "V8"}]),
ok = from_dict("../test/hashtable1_test.cdb",D),
{ok, Handle} = file:open("../test/hashtable1_test.cdb",
[binary, raw, read, write]),
Hash = hash(Key1),
Index = hash_to_index(Hash),
{ok, _} = file:position(Handle, {bof, ?DWORD_SIZE*Index}),
{HashTable, Count} = read_next_2_integers(Handle),
io:format("Count of ~w~n", [Count]),
{ok, FirstHashPosition} = file:position(Handle, {bof, HashTable}),
Slot = hash_to_slot(Hash, Count),
io:format("Slot of ~w~n", [Slot]),
{ok, _} = file:position(Handle, {cur, Slot * ?DWORD_SIZE}),
{ReadH3, ReadP3} = read_next_2_integers(Handle),
{ReadH4, ReadP4} = read_next_2_integers(Handle),
io:format("Slot 1 has Hash ~w Position ~w~n", [ReadH3, ReadP3]),
io:format("Slot 2 has Hash ~w Position ~w~n", [ReadH4, ReadP4]),
?assertMatch(0, ReadH4),
?assertMatch({"key1", "value1"}, get(Handle, Key1)),
?assertMatch(probably, get(Handle, Key1, no_cache, loose_presence)),
?assertMatch(missing, get(Handle, "Key99", no_cache, loose_presence)),
{ok, _} = file:position(Handle, FirstHashPosition),
FlipH3 = endian_flip(ReadH3),
FlipP3 = endian_flip(ReadP3),
RBin = <<FlipH3:32/integer,
FlipP3:32/integer,
0:32/integer,
0:32/integer>>,
io:format("Replacement binary of ~w~n", [RBin]),
{ok, OldBin} = file:pread(Handle,
FirstHashPosition + (Slot -1) * ?DWORD_SIZE, 16),
io:format("Bin to be replaced is ~w ~n", [OldBin]),
ok = file:pwrite(Handle,
FirstHashPosition + (Slot -1) * ?DWORD_SIZE,
RBin),
ok = file:close(Handle),
io:format("Find key following change to hash table~n"),
?assertMatch(missing, get("../test/hashtable1_test.cdb", Key1)),
ok = file:delete("../test/hashtable1_test.cdb").
getnextkey_inclemptyvalue_test() ->
L = [{"K9", "V9"}, {"K2", "V2"}, {"K3", ""},
{"K4", "V4"}, {"K5", "V5"}, {"K6", "V6"}, {"K7", "V7"},
{"K8", "V8"}, {"K1", "V1"}],
ok = create("../test/hashtable2_test.cdb", L),
{FirstKey, Handle, P1} = get_nextkey("../test/hashtable2_test.cdb"),
io:format("Next position details of ~w~n", [P1]),
?assertMatch("K9", FirstKey),
{SecondKey, Handle, P2} = get_nextkey(Handle, P1),
?assertMatch("K2", SecondKey),
{ThirdKeyNoValue, Handle, P3} = get_nextkey(Handle, P2),
?assertMatch("K3", ThirdKeyNoValue),
{_, Handle, P4} = get_nextkey(Handle, P3),
{_, Handle, P5} = get_nextkey(Handle, P4),
{_, Handle, P6} = get_nextkey(Handle, P5),
{_, Handle, P7} = get_nextkey(Handle, P6),
{_, Handle, P8} = get_nextkey(Handle, P7),
{LastKey, nomorekeys} = get_nextkey(Handle, P8),
?assertMatch("K1", LastKey),
ok = file:delete("../test/hashtable2_test.cdb").
newactivefile_test() ->
{LastPosition, _, _} = open_active_file("../test/activefile_test.cdb"),
?assertMatch(256 * ?DWORD_SIZE, LastPosition),
Response = get_nextkey("../test/activefile_test.cdb"),
?assertMatch(nomorekeys, Response),
ok = file:delete("../test/activefile_test.cdb").
emptyvalue_fromdict_test() ->
D = dict:new(),
D1 = dict:store("K1", "V1", D),
D2 = dict:store("K2", "", D1),
D3 = dict:store("K3", "V3", D2),
D4 = dict:store("K4", "", D3),
ok = from_dict("../test/from_dict_test_ev.cdb",D4),
io:format("Store created ~n", []),
KVP = lists:sort(dump("../test/from_dict_test_ev.cdb")),
D_Result = lists:sort(dict:to_list(D4)),
io:format("KVP is ~w~n", [KVP]),
io:format("D_Result is ~w~n", [D_Result]),
?assertMatch(KVP, D_Result),
ok = file:delete("../test/from_dict_test_ev.cdb").
find_lastkey_test() ->
{ok, P1} = cdb_open_writer("../test/lastkey.pnd",
#cdb_options{binary_mode=false}),
ok = cdb_put(P1, "Key1", "Value1"),
ok = cdb_put(P1, "Key3", "Value3"),
ok = cdb_put(P1, "Key2", "Value2"),
?assertMatch("Key2", cdb_lastkey(P1)),
?assertMatch("Key1", cdb_firstkey(P1)),
probably = cdb_keycheck(P1, "Key2"),
ok = cdb_close(P1),
{ok, P2} = cdb_open_writer("../test/lastkey.pnd",
#cdb_options{binary_mode=false}),
?assertMatch("Key2", cdb_lastkey(P2)),
probably = cdb_keycheck(P2, "Key2"),
{ok, F2} = cdb_complete(P2),
{ok, P3} = cdb_open_reader(F2),
?assertMatch("Key2", cdb_lastkey(P3)),
{ok, _FN} = cdb_complete(P3),
{ok, P4} = cdb_open_reader(F2),
?assertMatch("Key2", cdb_lastkey(P4)),
ok = cdb_close(P4),
ok = file:delete("../test/lastkey.cdb").
get_keys_byposition_simple_test() ->
{ok, P1} = cdb_open_writer("../test/poskey.pnd",
#cdb_options{binary_mode=false}),
ok = cdb_put(P1, "Key1", "Value1"),
ok = cdb_put(P1, "Key3", "Value3"),
ok = cdb_put(P1, "Key2", "Value2"),
KeyList = ["Key1", "Key2", "Key3"],
{ok, F2} = cdb_complete(P1),
{ok, P2} = cdb_open_reader(F2, #cdb_options{binary_mode=false}),
PositionList = cdb_getpositions(P2, all),
io:format("Position list of ~w~n", [PositionList]),
?assertMatch(3, length(PositionList)),
R1 = cdb_directfetch(P2, PositionList, key_only),
?assertMatch(3, length(R1)),
lists:foreach(fun(Key) ->
Check = lists:member(Key, KeyList),
?assertMatch(Check, true) end,
R1),
R2 = cdb_directfetch(P2, PositionList, key_size),
?assertMatch(3, length(R2)),
lists:foreach(fun({Key, _Size}) ->
Check = lists:member(Key, KeyList),
?assertMatch(Check, true) end,
R2),
R3 = cdb_directfetch(P2, PositionList, key_value_check),
?assertMatch(3, length(R3)),
lists:foreach(fun({Key, Value, Check}) ->
?assertMatch(Check, true),
{K, V} = cdb_get(P2, Key),
?assertMatch(K, Key),
?assertMatch(V, Value) end,
R3),
ok = cdb_close(P2),
ok = file:delete(F2).
generate_sequentialkeys(0, KVList) ->
lists:reverse(KVList);
generate_sequentialkeys(Count, KVList) ->
KV = {"Key" ++ integer_to_list(Count), "Value" ++ integer_to_list(Count)},
generate_sequentialkeys(Count - 1, KVList ++ [KV]).
get_keys_byposition_manykeys_test() ->
KeyCount = 1024,
{ok, P1} = cdb_open_writer("../test/poskeymany.pnd",
#cdb_options{binary_mode=false}),
KVList = generate_sequentialkeys(KeyCount, []),
lists:foreach(fun({K, V}) -> cdb_put(P1, K, V) end, KVList),
ok = cdb_roll(P1),
% Should not return posiitons when rolling
?assertMatch([], cdb_getpositions(P1, 10)),
lists:foldl(fun(X, Complete) ->
case Complete of
true ->
true;
false ->
case cdb_checkhashtable(P1) of
true ->
true;
false ->
timer:sleep(X),
false
end
end end,
false,
lists:seq(1, 20)),
?assertMatch(10, length(cdb_getpositions(P1, 10))),
{ok, F2} = cdb_complete(P1),
{ok, P2} = cdb_open_reader(F2, #cdb_options{binary_mode=false}),
PositionList = cdb_getpositions(P2, all),
L1 = length(PositionList),
?assertMatch(L1, KeyCount),
SampleList1 = cdb_getpositions(P2, 10),
?assertMatch(10, length(SampleList1)),
SampleList2 = cdb_getpositions(P2, KeyCount),
?assertMatch(KeyCount, length(SampleList2)),
SampleList3 = cdb_getpositions(P2, KeyCount + 1),
?assertMatch(KeyCount, length(SampleList3)),
ok = cdb_close(P2),
ok = file:delete(F2).
nokeys_test() ->
{ok, P1} = cdb_open_writer("../test/nohash_emptyfile.pnd",
#cdb_options{binary_mode=false}),
{ok, F2} = cdb_complete(P1),
{ok, P2} = cdb_open_reader(F2, #cdb_options{binary_mode=false}),
io:format("FirstKey is ~s~n", [cdb_firstkey(P2)]),
io:format("LastKey is ~s~n", [cdb_lastkey(P2)]),
?assertMatch(empty, cdb_firstkey(P2)),
?assertMatch(empty, cdb_lastkey(P2)),
ok = cdb_close(P2),
ok = file:delete(F2).
mput_test() ->
KeyCount = 1024,
{ok, P1} = cdb_open_writer("../test/nohash_keysinfile.pnd",
#cdb_options{binary_mode=false}),
KVList = generate_sequentialkeys(KeyCount, []),
ok = cdb_mput(P1, KVList),
?assertMatch({"Key1", "Value1"}, cdb_get(P1, "Key1")),
?assertMatch({"Key1024", "Value1024"}, cdb_get(P1, "Key1024")),
?assertMatch(missing, cdb_get(P1, "Key1025")),
?assertMatch(missing, cdb_get(P1, "Key1026")),
{ok, F2} = cdb_complete(P1),
{ok, P2} = cdb_open_reader(F2, #cdb_options{binary_mode=false}),
?assertMatch("Key1", cdb_firstkey(P2)),
?assertMatch("Key1024", cdb_lastkey(P2)),
?assertMatch({"Key1", "Value1"}, cdb_get(P2, "Key1")),
?assertMatch({"Key1024", "Value1024"}, cdb_get(P2, "Key1024")),
?assertMatch(missing, cdb_get(P2, "Key1025")),
?assertMatch(missing, cdb_get(P2, "Key1026")),
ok = cdb_close(P2),
ok = file:delete(F2).
state_test() ->
{ok, P1} = cdb_open_writer("../test/state_test.pnd",
#cdb_options{binary_mode=false}),
KVList = generate_sequentialkeys(1000, []),
ok = cdb_mput(P1, KVList),
?assertMatch(probably, cdb_keycheck(P1, "Key1")),
?assertMatch({"Key1", "Value1"}, cdb_get(P1, "Key1")),
ok = cdb_roll(P1),
?assertMatch(probably, cdb_keycheck(P1, "Key1")),
?assertMatch({"Key1", "Value1"}, cdb_get(P1, "Key1")),
ok = cdb_deletepending(P1),
?assertMatch(probably, cdb_keycheck(P1, "Key1")),
?assertMatch({"Key1", "Value1"}, cdb_get(P1, "Key1")),
timer:sleep(500),
?assertMatch(probably, cdb_keycheck(P1, "Key1")),
?assertMatch({"Key1", "Value1"}, cdb_get(P1, "Key1")),
ok = cdb_close(P1).
hashclash_test() ->
{ok, P1} = cdb_open_writer("../test/hashclash_test.pnd",
#cdb_options{binary_mode=false}),
Key1 = "Key4184465780",
Key99 = "Key4254669179",
KeyNF = "Key9070567319",
?assertMatch(22, hash(Key1)),
?assertMatch(22, hash(Key99)),
?assertMatch(22, hash(KeyNF)),
ok = cdb_mput(P1, [{Key1, 1}, {Key99, 99}]),
?assertMatch(probably, cdb_keycheck(P1, Key1)),
?assertMatch(probably, cdb_keycheck(P1, Key99)),
?assertMatch(probably, cdb_keycheck(P1, KeyNF)),
?assertMatch({Key1, 1}, cdb_get(P1, Key1)),
?assertMatch({Key99, 99}, cdb_get(P1, Key99)),
?assertMatch(missing, cdb_get(P1, KeyNF)),
{ok, FN} = cdb_complete(P1),
{ok, P2} = cdb_open_reader(FN),
?assertMatch(probably, cdb_keycheck(P2, Key1)),
?assertMatch(probably, cdb_keycheck(P2, Key99)),
?assertMatch(probably, cdb_keycheck(P2, KeyNF)),
?assertMatch({Key1, 1}, cdb_get(P2, Key1)),
?assertMatch({Key99, 99}, cdb_get(P2, Key99)),
?assertMatch(missing, cdb_get(P2, KeyNF)),
ok = cdb_deletepending(P2),
?assertMatch(probably, cdb_keycheck(P2, Key1)),
?assertMatch(probably, cdb_keycheck(P2, Key99)),
?assertMatch(probably, cdb_keycheck(P2, KeyNF)),
?assertMatch({Key1, 1}, cdb_get(P2, Key1)),
?assertMatch({Key99, 99}, cdb_get(P2, Key99)),
?assertMatch(missing, cdb_get(P2, KeyNF)),
ok = cdb_close(P2).
corruptfile_test() ->
file:delete("../test/corrupt_test.pnd"),
{ok, P1} = cdb_open_writer("../test/corrupt_test.pnd",
#cdb_options{binary_mode=false}),
KVList = generate_sequentialkeys(100, []),
ok = cdb_mput(P1, []), % Not relevant to this test, but needs testing
lists:foreach(fun({K, V}) -> cdb_put(P1, K, V) end, KVList),
?assertMatch(probably, cdb_keycheck(P1, "Key1")),
?assertMatch({"Key1", "Value1"}, cdb_get(P1, "Key1")),
?assertMatch({"Key100", "Value100"}, cdb_get(P1, "Key100")),
ok = cdb_close(P1),
lists:foreach(fun(Offset) -> corrupt_testfile_at_offset(Offset) end,
lists:seq(1, 40)),
ok = file:delete("../test/corrupt_test.pnd").
2016-11-08 23:07:03 +00:00
corrupt_testfile_at_offset(Offset) ->
{ok, F1} = file:open("../test/corrupt_test.pnd", ?WRITE_OPS),
{ok, EofPos} = file:position(F1, eof),
file:position(F1, EofPos - Offset),
ok = file:truncate(F1),
ok = file:close(F1),
{ok, P2} = cdb_open_writer("../test/corrupt_test.pnd",
#cdb_options{binary_mode=false}),
?assertMatch(probably, cdb_keycheck(P2, "Key1")),
?assertMatch({"Key1", "Value1"}, cdb_get(P2, "Key1")),
?assertMatch(missing, cdb_get(P2, "Key100")),
ok = cdb_put(P2, "Key100", "Value100"),
?assertMatch({"Key100", "Value100"}, cdb_get(P2, "Key100")),
ok = cdb_close(P2).
2016-11-08 23:07:03 +00:00
crc_corrupt_writer_test() ->
file:delete("../test/corruptwrt_test.pnd"),
{ok, P1} = cdb_open_writer("../test/corruptwrt_test.pnd",
#cdb_options{binary_mode=false}),
KVList = generate_sequentialkeys(100, []),
ok = cdb_mput(P1, KVList),
?assertMatch(probably, cdb_keycheck(P1, "Key1")),
?assertMatch({"Key1", "Value1"}, cdb_get(P1, "Key1")),
?assertMatch({"Key100", "Value100"}, cdb_get(P1, "Key100")),
ok = cdb_close(P1),
{ok, Handle} = file:open("../test/corruptwrt_test.pnd", ?WRITE_OPS),
{ok, EofPos} = file:position(Handle, eof),
% zero the last byte of the last value
ok = file:pwrite(Handle, EofPos - 5, <<0:8/integer>>),
ok = file:close(Handle),
{ok, P2} = cdb_open_writer("../test/corruptwrt_test.pnd",
#cdb_options{binary_mode=false}),
?assertMatch(probably, cdb_keycheck(P2, "Key1")),
?assertMatch({"Key1", "Value1"}, cdb_get(P2, "Key1")),
?assertMatch(missing, cdb_get(P2, "Key100")),
ok = cdb_put(P2, "Key100", "Value100"),
?assertMatch({"Key100", "Value100"}, cdb_get(P2, "Key100")),
ok = cdb_close(P2).
riak_writeops_test() ->
?assertMatch([o_sync, binary, raw, read, write], set_writeops(riak_sync)).
nonsense_coverage_test() ->
{ok, Pid} = gen_fsm:start(?MODULE, [#cdb_options{}], []),
ok = gen_fsm:send_all_state_event(Pid, nonsense),
?assertMatch({next_state, reader, #state{}}, handle_info(nonsense,
reader,
#state{})),
?assertMatch({ok, reader, #state{}}, code_change(nonsense,
reader,
#state{},
nonsense)).
-endif.