%% The MIT License %% Copyright (c) 2010 Alisdair Sullivan %% Permission is hereby granted, free of charge, to any person obtaining a copy %% of this software and associated documentation files (the "Software"), to deal %% in the Software without restriction, including without limitation the rights %% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell %% copies of the Software, and to permit persons to whom the Software is %% furnished to do so, subject to the following conditions: %% The above copyright notice and this permission notice shall be included in %% all copies or substantial portions of the Software. %% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR %% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, %% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE %% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER %% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, %% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN %% THE SOFTWARE. -module(jsx_parser). -author("alisdairsullivan@yahoo.ca"). -export([decode/1, event/2]). -export([literal/1, string/1, number/1]). %% this is a strict parser, no comments, no naked values and only one key per object. it %% also is not streaming, though it could be modified to parse partial objects/lists. decode(JSON) -> P = jsx:decoder({{jsx_parser, event}, []}, []), case P(JSON) of {incomplete, _} -> {error, badjson} ; {error, badjson} -> {error, badjosn} ; {Result, _} -> Result end. %% erlang representation is dicts for objects and lists for arrays. these are pushed %% onto a stack, the top of which is our current level, deeper levels represent parent %% and grandparent levels in the json structure. keys are also stored on top of the array %% during parsing of their associated values. event(start_object, Stack) -> [dict:new()] ++ Stack; event(start_array, Stack) -> [[]] ++ Stack; event(end_object, [Object, {key, Key}, Parent|Stack]) when is_tuple(Parent) -> [insert(Key, Object, Parent)] ++ Stack; event(end_array, [Array, {key, Key}, Parent|Stack]) when is_tuple(Parent) -> [insert(Key, Array, Parent)] ++ Stack; event(end_object, [Object, Parent|Stack]) when is_list(Parent) -> [[Object] ++ Parent] ++ Stack; event(end_array, [Array, Parent|Stack]) when is_list(Parent) -> [[Array] ++ Parent] ++ Stack; %% special cases for closing the root objects event(end_object, [Object]) -> [Object]; event(end_array, [Array]) -> [lists:reverse(Array)]; event({key, Key}, [Object|Stack]) -> [{key, Key}] ++ [Object] ++ Stack; %% this is kind of a dirty hack, but erlang will interpret atoms when applied to (Args) %% as a function. so naming our formatting functions string, number and literal will %% allow the following shortcut event({Type, Value}, [{key, Key}, Object|Stack]) -> [insert(Key, ?MODULE:Type(Value), Object)] ++ Stack; event({Type, Value}, [Array|Stack]) when is_list(Array) -> [[?MODULE:Type(Value)] ++ Array] ++ Stack; event(end_of_stream, [Stack]) -> Stack. %% we're restricting keys to one occurence per object, as the spec implies. insert(Key, Val, Dict) -> case dict:is_key(Key, Dict) of false -> dict:store(Key, Val, Dict) ; true -> erlang:error(badjson) end. %% strings, numbers and literals we just return with no post-processing, this is where we %% would deal with them though. string(String) -> String. number(Number) -> Number. literal(Literal) -> Literal.