%% The MIT License %% Copyright (c) 2010 Alisdair Sullivan %% Permission is hereby granted, free of charge, to any person obtaining a copy %% of this software and associated documentation files (the "Software"), to deal %% in the Software without restriction, including without limitation the rights %% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell %% copies of the Software, and to permit persons to whom the Software is %% furnished to do so, subject to the following conditions: %% The above copyright notice and this permission notice shall be included in %% all copies or substantial portions of the Software. %% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR %% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, %% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE %% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER %% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, %% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN %% THE SOFTWARE. %% @hidden hide this module from edoc, exported functions are internal to jsx %% and may be altered or removed without notice -module(jsx_eep0018). -export([json_to_term/2, term_to_json/2]). -include("./include/jsx_common.hrl"). -ifdef(TEST). -include_lib("eunit/include/eunit.hrl"). -endif. json_to_term(JSON, Opts) -> P = jsx:parser(opts_to_jsx_opts(Opts)), case proplists:get_value(strict, Opts, true) of true -> collect_strict(P(JSON), [[]], Opts) ; false -> collect(P(JSON), [[]], Opts) end. %% the jsx formatter (pretty printer) can do most of the heavy lifting in %% converting erlang terms to json strings, but it expects a jsx event %% iterator. luckily, the mapping from erlang terms to jsx events is %% straightforward and the iterator can be faked with an anonymous function term_to_json(List, Opts) -> case proplists:get_value(strict, Opts, true) of true when is_list(List) -> continue ; true -> erlang:error(badarg) ; false -> continue end, Encoding = proplists:get_value(encoding, Opts, utf8), jsx:format(jsx:eventify(lists:reverse([end_json] ++ term_to_events(List))), [{output_encoding, Encoding}] ++ Opts ). %% parse opts for the decoder opts_to_jsx_opts(Opts) -> opts_to_jsx_opts(Opts, []). opts_to_jsx_opts([{encoding, Val}|Rest], Acc) -> case lists:member(Val, [auto, utf8, utf16, {utf16, little}, utf32, {utf32, little}] ) of true -> opts_to_jsx_opts(Rest, [{encoding, Val}] ++ Acc) ; false -> opts_to_jsx_opts(Rest, Acc) end; opts_to_jsx_opts([{comments, Val}|Rest], Acc) -> case Val of true -> opts_to_jsx_opts(Rest, [{comments, true}] ++ Acc) ; false -> opts_to_jsx_opts(Rest, [{comments, false}] ++ Acc) ; _ -> opts_to_jsx_opts(Rest, Acc) end; opts_to_jsx_opts([_|Rest], Acc) -> opts_to_jsx_opts(Rest, Acc); opts_to_jsx_opts([], Acc) -> Acc. %% ensure the first jsx event we get is start_object or start_array when running %% in strict mode collect_strict({event, Start, Next}, Acc, Opts) when Start =:= start_object; Start =:= start_array -> collect(Next(), [[]|Acc], Opts); collect_strict(_, _, _) -> erlang:error(badarg). %% collect decoder events and convert to eep0018 format collect({event, Start, Next}, Acc, Opts) when Start =:= start_object; Start =:= start_array -> collect(Next(), [[]|Acc], Opts); %% special case for empty object collect({event, end_object, Next}, [[], Parent|Rest], Opts) when is_list(Parent) -> collect(Next(), [[[{}]] ++ Parent] ++ Rest, Opts); %% reverse the array/object accumulator before prepending it to it's parent collect({event, end_object, Next}, [Current, Parent|Rest], Opts) when is_list(Parent) -> collect(Next(), [[lists:reverse(Current)] ++ Parent] ++ Rest, Opts); collect({event, end_array, Next}, [Current, Parent|Rest], Opts) when is_list(Parent) -> collect(Next(), [[lists:reverse(Current)] ++ Parent] ++ Rest, Opts); %% special case for empty object collect({event, end_object, Next}, [[], Key, Parent|Rest], Opts) -> collect(Next(), [[{Key, [{}]}] ++ Parent] ++ Rest, Opts); collect({event, End, Next}, [Current, Key, Parent|Rest], Opts) when End =:= end_object; End =:= end_array -> collect(Next(), [[{Key, lists:reverse(Current)}] ++ Parent] ++ Rest, Opts); collect({event, end_json, _Next}, [[Acc]], _Opts) -> Acc; %% key can only be emitted inside of a json object, so just insert it directly %% into the head of the accumulator and deal with it when we receive it's %% paired value collect({event, {key, _} = PreKey, Next}, [Current|_] = Acc, Opts) -> Key = event(PreKey, Opts), case decode_key_repeats(Key, Current) of true -> erlang:error(badarg) ; false -> collect(Next(), [Key] ++ Acc, Opts) end; %% check acc to see if we're inside an object or an array. because inside an %% object context the events that fall this far are always preceded by a key %% (which are binaries or atoms), if Current is a list, we're inside an array, %% else, an object collect({event, Event, Next}, [Current|Rest], Opts) when is_list(Current) -> collect(Next(), [[event(Event, Opts)] ++ Current] ++ Rest, Opts); collect({event, Event, Next}, [Key, Current|Rest], Opts) -> collect(Next(), [[{Key, event(Event, Opts)}] ++ Current] ++ Rest, Opts); %% if our first returned event is {incomplete, ...} try to force end and return %% the Event if one is returned collect({incomplete, More}, [[]], Opts) -> case More(end_stream) of {event, Event, _Next} -> event(Event, Opts) ; _ -> erlang:error(badarg) end; %% any other event is an error collect(_, _, _) -> erlang:error(badarg). %% helper functions for converting jsx events to eep0018 formats event({string, String}, _Opts) -> unicode:characters_to_binary(String); event({key, Key}, Opts) -> case proplists:get_value(label, Opts, binary) of binary -> unicode:characters_to_binary(Key) ; atom -> try list_to_atom(Key) catch error:badarg -> unicode:characters_to_binary(Key) end ; existing_atom -> try list_to_existing_atom(Key) catch error:badarg -> unicode:characters_to_binary(Key) end end; %% special case for negative zero event({integer, "-0"}, _Opts) -> erlang:float(erlang:list_to_integer("-0")); event({integer, Integer}, Opts) -> case proplists:get_value(float, Opts, false) of true -> erlang:float(erlang:list_to_integer(Integer)) ; false -> erlang:list_to_integer(Integer) end; event({float, Float}, _Opts) -> erlang:list_to_float(Float); event({literal, Literal}, _Opts) -> Literal. decode_key_repeats(Key, [{Key, _Value}|_Rest]) -> true; decode_key_repeats(Key, [_|Rest]) -> decode_key_repeats(Key, Rest); decode_key_repeats(_Key, []) -> false. %% convert eep0018 representation to jsx events. note special casing for the %% empty object term_to_events([{}]) -> [end_object, start_object]; term_to_events([First|_] = List) when is_tuple(First) -> proplist_to_events(List, [start_object]); term_to_events(List) when is_list(List) -> list_to_events(List, [start_array]); term_to_events(Term) -> term_to_event(Term). proplist_to_events([{Key, Term}|Rest], Acc) -> Event = term_to_event(Term), EncodedKey = key_to_event(Key), case encode_key_repeats(EncodedKey, Acc) of false -> proplist_to_events(Rest, Event ++ EncodedKey ++ Acc) ; true -> erlang:error(badarg) end; proplist_to_events([], Acc) -> [end_object] ++ Acc; proplist_to_events(_, _) -> erlang:throw(badarg). list_to_events([Term|Rest], Acc) -> list_to_events(Rest, term_to_event(Term) ++ Acc); list_to_events([], Acc) -> [end_array] ++ Acc. term_to_event(List) when is_list(List) -> term_to_events(List); term_to_event(Float) when is_float(Float) -> [{float, nice_decimal(Float)}]; term_to_event(Integer) when is_integer(Integer) -> [{integer, erlang:integer_to_list(Integer)}]; term_to_event(String) when is_binary(String) -> [{string, json_escape(String)}]; term_to_event(true) -> [{literal, true}]; term_to_event(false) -> [{literal, false}]; term_to_event(null) -> [{literal, null}]; term_to_event(_) -> erlang:error(badarg). key_to_event(Key) when is_atom(Key) -> [{key, json_escape(erlang:atom_to_binary(Key, utf8))}]; key_to_event(Key) when is_binary(Key) -> [{key, json_escape(Key)}]. encode_key_repeats([Key], SoFar) -> encode_key_repeats(Key, SoFar, 0). encode_key_repeats(Key, [Key|_], 0) -> true; encode_key_repeats(Key, [end_object|Rest], Level) -> encode_key_repeats(Key, Rest, Level + 1); encode_key_repeats(_, [start_object|_], 0) -> false; encode_key_repeats(Key, [start_object|Rest], Level) -> encode_key_repeats(Key, Rest, Level - 1); encode_key_repeats(Key, [_|Rest], Level) -> encode_key_repeats(Key, Rest, Level); encode_key_repeats(_, [], 0) -> false. %% conversion of floats to 'nice' decimal output. erlang's float implementation %% is almost but not quite ieee 754. it converts negative zero to plain zero %% silently, and throws exceptions for any operations that would produce NaN %% or infinity. as far as I can tell that is. trying to match against NaN or %% infinity binary patterns produces nomatch exceptions, and arithmetic %% operations produce badarg exceptions. with that in mind, this function %% makes no attempt to handle special values (except for zero) %% algorithm from "Printing FLoating-Point Numbers Quickly and Accurately" by %% Burger & Dybvig nice_decimal(0.0) -> "0.0"; nice_decimal(Num) when is_float(Num) -> {F, E} = extract(<>), {R, S, MP, MM} = initial_vals(F, E), K = ceiling(math:log10(abs(Num)) - 1.0e-10), Round = F band 1 =:= 0, {Dpoint, Digits} = scale(R, S, MP, MM, K, Round), if Num >= 0 -> format(Dpoint, Digits) ; Num < 0 -> "-" ++ format(Dpoint, Digits) end. extract(<<_:1, 0:11, Frac:52>>) -> {Frac, -1074}; extract(<<_:1, Exp:11, Frac:52>>) -> {Frac + (1 bsl 52), Exp - 1075}. ceiling(X) -> Y = trunc(X), case X - Y of Z when Z > 0 -> Y + 1 ; _ -> Y end. initial_vals(F, E) when E >= 0, F /= 1 bsl 52 -> BE = 1 bsl E, {F * BE * 2, 2, BE, BE}; initial_vals(F, E) when E >= 0 -> BE = 1 bsl E, {F * BE * 4, 4, BE * 2, BE}; initial_vals(F, E) when E == -1074; F /= 1 bsl 52 -> {F * 2, 1 bsl (-E + 1), 1, 1}; initial_vals(F, E) -> {F * 4, 1 bsl (-E + 2), 2, 1}. scale(R, S, MP, MM, K, Round) -> case K >= 0 of true -> fixup(R, S * pow(10, K), MP, MM, K, Round) ; false -> Scale = pow(10, -1 * K), fixup(R * Scale, S, MP * Scale, MM * Scale, K, Round) end. fixup(R, S, MP, MM, K, true) -> case (R + MP >= S) of true -> {K + 1, generate(R, S, MP, MM, true)} ; false -> {K, generate(R * 10, S, MP * 10, MM * 10, true)} end; fixup(R, S, MP, MM, K, false) -> case (R + MP > S) of true -> {K + 1, generate(R, S, MP, MM, true)} ; false -> {K, generate(R * 10, S, MP * 10, MM * 10, true)} end. generate(RT, S, MP, MM, Round) -> D = RT div S, R = RT rem S, TC1 = case Round of true -> (R =< MM); false -> (R < MM) end, TC2 = case Round of true -> (R + MP >= S); false -> (R + MP > S) end, case TC1 of false -> case TC2 of false -> [D | generate(R * 10, S, MP * 10, MM * 10, Round)] ; true -> [D + 1] end ; true -> case TC2 of false -> [D] ; true -> case R * 2 < S of true -> [D] ; false -> [D + 1] end end end. %% this is not efficient at all and should be replaced with a lookup table %% probably pow(_B, 0) -> 1; pow(B, E) when E > 0 -> pow(B, E, 1). pow(B, E, Acc) when E < 2 -> B * Acc; pow(B, E, Acc) when E band 1 == 1 -> pow(B * B, E bsr 1, B * Acc); pow(B, E, Acc) -> pow(B * B, E bsr 1, Acc). format(0, Digits) -> format(Digits, ignore, ".0"); format(Dpoint, Digits) when Dpoint =< length(Digits), Dpoint > 0 -> format(Digits, Dpoint, []); format(Dpoint, Digits) when Dpoint > 0 -> Pad = Dpoint - length(Digits), case Pad of X when X > 6 -> format(Digits, 1, []) ++ "e" ++ integer_to_list(Dpoint - 1) ; _ -> format(Digits ++ [ 0 || _ <- lists:seq(1, Pad)], Dpoint, []) end; format(Dpoint, Digits) when Dpoint < 0 -> format(Digits, 1, []) ++ "e" ++ integer_to_list(Dpoint - 1). format([], 0, Acc) -> lists:reverse("0." ++ Acc); format([], ignore, Acc) -> lists:reverse(Acc); format(Digits, 0, Acc) -> format(Digits, ignore, "." ++ Acc); format([Digit|Digits], Dpoint, Acc) -> format(Digits, case Dpoint of ignore -> ignore; X -> X - 1 end, to_ascii(Digit) ++ Acc ). to_ascii(X) -> [X + 48]. %% ascii "1" is [49], "2" is [50], etc... %% json string escaping, for utf8 binaries. escape the json control sequences to %% their json equivalent, escape other control characters to \uXXXX sequences, %% everything else should be a legal json string component json_escape(String) -> json_escape(String, <<>>). %% double quote json_escape(<<$\", Rest/binary>>, Acc) -> json_escape(Rest, <>); %% backslash \ reverse solidus json_escape(<<$\\, Rest/binary>>, Acc) -> json_escape(Rest, <>); %% backspace json_escape(<<$\b, Rest/binary>>, Acc) -> json_escape(Rest, <>); %% form feed json_escape(<<$\f, Rest/binary>>, Acc) -> json_escape(Rest, <>); %% newline json_escape(<<$\n, Rest/binary>>, Acc) -> json_escape(Rest, <>); %% cr json_escape(<<$\r, Rest/binary>>, Acc) -> json_escape(Rest, <>); %% tab json_escape(<<$\t, Rest/binary>>, Acc) -> json_escape(Rest, <>); %% other control characters json_escape(<>, Acc) when C >= 0, C < $\s -> json_escape(Rest, <>); %% any other legal codepoint json_escape(<>, Acc) -> json_escape(Rest, <>); json_escape(<<>>, Acc) -> Acc; json_escape(_, _) -> erlang:error(badarg). %% convert a codepoint to it's \uXXXX equiv. for laziness, this only handles %% codepoints this module might escape, ie, control characters json_escape_sequence(C) when C < 16#20 -> <<_:8, A:4, B:4>> = <>, % first two hex digits are always zero <<$\\, $u, $0, $0, (to_hex(A)), (to_hex(B))>>. to_hex(15) -> $f; to_hex(14) -> $e; to_hex(13) -> $d; to_hex(12) -> $c; to_hex(11) -> $b; to_hex(10) -> $a; to_hex(X) -> X + $0. %% eunit tests -ifdef(TEST). decode_test_() -> [ {"empty object", ?_assert(json_to_term(<<"{}">>, []) =:= [{}])}, {"empty array", ?_assert(json_to_term(<<"[]">>, []) =:= [])}, {"simple object", ?_assert(json_to_term( <<"{\"a\": true, \"b\": true, \"c\": true}">>, [{label, atom}] ) =:= [{a, true}, {b, true}, {c, true}] ) }, {"simple array", ?_assert(json_to_term(<<"[true,true,true]">>, [] ) =:= [true, true, true] ) }, {"nested structures", ?_assert(json_to_term( <<"{\"x\":[{\"x\":[{}, {}],\"y\":{}}, []],\"y\":{}}">>, [{label, atom}] ) =:= [{x, [[{x, [[{}], [{}]]}, {y, [{}]}],[]]}, {y, [{}]}] ) }, {"numbers", ?_assert(json_to_term( <<"[-100000000.0, -1, 0.0, 0, 1, 100000000, 10000000.0]">>, [] ) =:= [-100000000.0, -1, 0.0, 0, 1, 100000000, 10000000.0] ) }, {"numbers (all floats)", ?_assert(json_to_term( <<"[-100000000.0, -1, 0.0, 0, 1, 1000, 10000000.0]">>, [{float, true}] ) =:= [-100000000.0, -1.0, 0.0, 0.0, 1.0, 1000.0, 10000000.0] ) }, {"strings", ?_assert(json_to_term(<<"[\"a string\"]">>, [] ) =:= [<<"a string">>]) }, {"literals", ?_assert(json_to_term(<<"[true,false,null]">>, [] ) =:= [true,false,null] ) }, {"naked true", ?_assert(json_to_term(<<"true">>, [{strict, false}]) =:= true) }, {"naked short number", ?_assert(json_to_term(<<"1">>, [{strict, false}]) =:= 1) }, {"float", ?_assert(json_to_term(<<"1.0">>, [{strict, false}]) =:= 1.0)}, {"naked string", ?_assert(json_to_term(<<"\"hello world\"">>, [{strict, false}] ) =:= <<"hello world">> ) }, {"comments", ?_assert(json_to_term(<<"[ /* a comment in an empty array */ ]">>, [{comments, true}] ) =:= [] ) } ]. encode_test_() -> [ {"empty object", ?_assert(term_to_json([{}], []) =:= <<"{}">>)}, {"empty array", ?_assert(term_to_json([], []) =:= <<"[]">>)}, {"simple object", ?_assert(term_to_json([{a, true}, {b, true}, {c, true}], [] ) =:= <<"{\"a\":true,\"b\":true,\"c\":true}">> ) }, {"simple array", ?_assert(term_to_json([true, true, true], [] ) =:= <<"[true,true,true]">> ) }, {"nested structures", ?_assert(term_to_json( [{x, [[{x, [[{}], [{}]]}, {y, [{}]}],[]]}, {y, [{}]}], [] ) =:= <<"{\"x\":[{\"x\":[{},{}],\"y\":{}},[]],\"y\":{}}">> ) }, {"numbers", ?_assert(term_to_json( [-10000000000.0, -1, 0.0, 0, 1, 10000000, 1000000000.0], [] ) =:= <<"[-1.0e10,-1,0.0,0,1,10000000,1.0e9]">> ) }, {"strings", ?_assert(term_to_json([<<"a string">>], [] ) =:= <<"[\"a string\"]">> ) }, {"literals", ?_assert(term_to_json([true,false,null], [] ) =:= <<"[true,false,null]">> ) }, {"naked true", ?_assert(term_to_json(true, [{strict, false}]) =:= <<"true">>) }, {"naked number", ?_assert(term_to_json(1, [{strict, false}]) =:= <<"1">>) }, {"float", ?_assert(term_to_json(1.0, [{strict, false}]) =:= <<"1.0">>)}, {"naked string", ?_assert(term_to_json(<<"hello world">>, [{strict, false}] ) =:= <<"\"hello world\"">> ) } ]. repeated_keys_test_() -> [ {"encode", ?_assertError(badarg, term_to_json([{k, true}, {k, false}], [])) }, {"decode", ?_assertError(badarg, json_to_term( <<"{\"k\": true, \"k\": false}">>, [] ) ) } ]. escape_test_() -> [ {"json string escaping", ?_assert(json_escape( <<"\"\\\b\f\n\r\t">> ) =:= <<"\\\"\\\\\\b\\f\\n\\r\\t">> ) }, {"json string hex escape", ?_assert(json_escape( <<1, 2, 3, 11, 26, 30, 31>> ) =:= <<"\\u0001\\u0002\\u0003\\u000b\\u001a\\u001e\\u001f">> ) } ]. nice_decimal_test_() -> [ {"0.0", ?_assert(nice_decimal(0.0) =:= "0.0")}, {"1.0", ?_assert(nice_decimal(1.0) =:= "1.0")}, {"-1.0", ?_assert(nice_decimal(-1.0) =:= "-1.0")}, {"3.1234567890987654321", ?_assert( nice_decimal(3.1234567890987654321) =:= "3.1234567890987655") }, {"1.0e23", ?_assert(nice_decimal(1.0e23) =:= "1.0e23")}, {"0.3", ?_assert(nice_decimal(3.0/10.0) =:= "0.3")}, {"0.0001", ?_assert(nice_decimal(0.0001) =:= "1.0e-4")}, {"0.00000001", ?_assert(nice_decimal(0.00000001) =:= "1.0e-8")}, {"1.0e-323", ?_assert(nice_decimal(1.0e-323) =:= "1.0e-323")}, {"1.0e308", ?_assert(nice_decimal(1.0e308) =:= "1.0e308")}, {"min normalized float", ?_assert( nice_decimal(math:pow(2, -1022)) =:= "2.2250738585072014e-308" ) }, {"max normalized float", ?_assert( nice_decimal((2 - math:pow(2, -52)) * math:pow(2, 1023)) =:= "1.7976931348623157e308" ) }, {"min denormalized float", ?_assert(nice_decimal(math:pow(2, -1074)) =:= "5.0e-324") }, {"max denormalized float", ?_assert( nice_decimal((1 - math:pow(2, -52)) * math:pow(2, -1022)) =:= "2.225073858507201e-308" ) } ]. -endif.