%% The MIT License %% Copyright (c) 2012 Alisdair Sullivan %% Permission is hereby granted, free of charge, to any person obtaining a copy %% of this software and associated documentation files (the "Software"), to deal %% in the Software without restriction, including without limitation the rights %% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell %% copies of the Software, and to permit persons to whom the Software is %% furnished to do so, subject to the following conditions: %% The above copyright notice and this permission notice shall be included in %% all copies or substantial portions of the Software. %% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR %% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, %% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE %% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER %% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, %% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN %% THE SOFTWARE. -module(jsx_parser). -export([parser/3]). -spec parser(Handler::module(), State::any(), Opts::jsx:opts()) -> jsx:parser(). parser(Handler, State, Opts) -> fun(Tokens) -> value(Tokens, {Handler, Handler:init(State)}, [], jsx_utils:parse_opts(Opts)) end. -include("jsx_opts.hrl"). %% error, incomplete and event macros -ifndef(error). -define(error(Args), erlang:error(badarg, Args) ). -endif. -ifndef(incomplete). -define(incomplete(State, Handler, Stack, Opts), {incomplete, fun(end_stream) -> case State([end_json], Handler, Stack, Opts) of {incomplete, _} -> ?error([Handler, Stack, Opts]) ; Events -> Events end ; (Tokens) -> State(Tokens, Handler, Stack, Opts) end } ). -endif. handle_event([], Handler, _Opts) -> Handler; handle_event([Event|Rest], Handler, Opts) -> handle_event(Rest, handle_event(Event, Handler, Opts), Opts); handle_event(Event, {Handler, State}, _Opts) -> {Handler, Handler:handle_event(Event, State)}. value([start_object|Tokens], Handler, Stack, Opts) -> object(Tokens, handle_event(start_object, Handler, Opts), [object|Stack], Opts); value([start_array|Tokens], Handler, Stack, Opts) -> array(Tokens, handle_event(start_array, Handler, Opts), [array|Stack], Opts); value([{literal, true}|Tokens], Handler, [], Opts) -> done(Tokens, handle_event({literal, true}, Handler, Opts), [], Opts); value([{literal, false}|Tokens], Handler, [], Opts) -> done(Tokens, handle_event({literal, false}, Handler, Opts), [], Opts); value([{literal, null}|Tokens], Handler, [], Opts) -> done(Tokens, handle_event({literal, null}, Handler, Opts), [], Opts); value([{literal, true}|Tokens], Handler, Stack, Opts) -> maybe_done(Tokens, handle_event({literal, true}, Handler, Opts), Stack, Opts); value([{literal, false}|Tokens], Handler, Stack, Opts) -> maybe_done(Tokens, handle_event({literal, false}, Handler, Opts), Stack, Opts); value([{literal, null}|Tokens], Handler, Stack, Opts) -> maybe_done(Tokens, handle_event({literal, null}, Handler, Opts), Stack, Opts); value([Literal|Tokens], Handler, Stack, Opts) when Literal == true; Literal == false; Literal == null -> value([{literal, Literal}] ++ Tokens, Handler, Stack, Opts); value([{integer, Number}|Tokens], Handler, [], Opts) when is_integer(Number) -> done(Tokens, handle_event({integer, Number}, Handler, Opts), [], Opts); value([{float, Number}|Tokens], Handler, [], Opts) when is_float(Number) -> done(Tokens, handle_event({float, Number}, Handler, Opts), [], Opts); value([{integer, Number}|Tokens], Handler, Stack, Opts) when is_integer(Number) -> maybe_done(Tokens, handle_event({integer, Number}, Handler, Opts), Stack, Opts); value([{float, Number}|Tokens], Handler, Stack, Opts) when is_float(Number) -> maybe_done(Tokens, handle_event({float, Number}, Handler, Opts), Stack, Opts); value([{number, Number}|Tokens], Handler, Stack, Opts) when is_integer(Number) -> value([{integer, Number}] ++ Tokens, Handler, Stack, Opts); value([{number, Number}|Tokens], Handler, Stack, Opts) when is_float(Number) -> value([{float, Number}] ++ Tokens, Handler, Stack, Opts); value([Number|Tokens], Handler, Stack, Opts) when is_integer(Number) -> value([{integer, Number}] ++ Tokens, Handler, Stack, Opts); value([Number|Tokens], Handler, Stack, Opts) when is_float(Number) -> value([{float, Number}] ++ Tokens, Handler, Stack, Opts); value([{string, String}|Tokens], Handler, [], Opts) when is_binary(String) -> done(Tokens, handle_event({string, clean_string(String, Opts)}, Handler, Opts), [], Opts); value([{string, String}|Tokens], Handler, Stack, Opts) when is_binary(String) -> maybe_done(Tokens, handle_event({string, clean_string(String, Opts)}, Handler, Opts), Stack, Opts); value([String|Tokens], Handler, Stack, Opts) when is_binary(String) -> value([{string, String}] ++ Tokens, Handler, Stack, Opts); value([], Handler, Stack, Opts) -> ?incomplete(value, Handler, Stack, Opts); value(BadTokens, Handler, Stack, Opts) when is_list(BadTokens) -> ?error([BadTokens, Handler, Stack, Opts]); value(Token, Handler, Stack, Opts) -> value([Token], Handler, Stack, Opts). object([end_object|Tokens], Handler, [object|Stack], Opts) -> maybe_done(Tokens, handle_event(end_object, Handler, Opts), Stack, Opts); object([{key, Key}|Tokens], Handler, Stack, Opts) when is_atom(Key); is_binary(Key) -> value(Tokens, handle_event({key, clean_string(fix_key(Key), Opts)}, Handler, Opts), Stack, Opts); object([Key|Tokens], Handler, Stack, Opts) when is_atom(Key); is_binary(Key) -> value(Tokens, handle_event({key, clean_string(fix_key(Key), Opts)}, Handler, Opts), Stack, Opts); object([], Handler, Stack, Opts) -> ?incomplete(object, Handler, Stack, Opts); object(BadTokens, Handler, Stack, Opts) when is_list(BadTokens) -> ?error([BadTokens, Handler, Stack, Opts]); object(Token, Handler, Stack, Opts) -> object([Token], Handler, Stack, Opts). array([end_array|Tokens], Handler, [array|Stack], Opts) -> maybe_done(Tokens, handle_event(end_array, Handler, Opts), Stack, Opts); array([], Handler, Stack, Opts) -> ?incomplete(array, Handler, Stack, Opts); array(Tokens, Handler, Stack, Opts) when is_list(Tokens) -> value(Tokens, Handler, Stack, Opts); array(Token, Handler, Stack, Opts) -> array([Token], Handler, Stack, Opts). maybe_done([end_json], Handler, [], Opts) -> done([], Handler, [], Opts); maybe_done(Tokens, Handler, [object|_] = Stack, Opts) when is_list(Tokens) -> object(Tokens, Handler, Stack, Opts); maybe_done(Tokens, Handler, [array|_] = Stack, Opts) when is_list(Tokens) -> array(Tokens, Handler, Stack, Opts); maybe_done([], Handler, Stack, Opts) -> ?incomplete(maybe_done, Handler, Stack, Opts); maybe_done(BadTokens, Handler, Stack, Opts) when is_list(BadTokens) -> ?error([BadTokens, Handler, Stack, Opts]); maybe_done(Token, Handler, Stack, Opts) -> maybe_done([Token], Handler, Stack, Opts). done(Tokens, Handler, [], Opts) when Tokens == [end_json]; Tokens == [] -> {_, State} = handle_event(end_json, Handler, Opts), State; done(BadTokens, Handler, Stack, Opts) when is_list(BadTokens) -> ?error([BadTokens, Handler, Stack, Opts]); done(Token, Handler, Stack, Opts) -> done([Token], Handler, Stack, Opts). fix_key(Key) when is_atom(Key) -> fix_key(atom_to_binary(Key, utf8)); fix_key(Key) when is_binary(Key) -> Key. clean_string(Bin, Opts) -> jsx_utils:clean_string(Bin, Opts). -ifdef(TEST). -include_lib("eunit/include/eunit.hrl"). incomplete_test_() -> F = parser(jsx, [], []), [ {"incomplete test", ?_assertEqual( begin {incomplete, A} = F(start_object), {incomplete, B} = A(key), {incomplete, C} = B(true), {incomplete, D} = C(end_object), D(end_json) end, [start_object, {key, <<"key">>}, {literal, true}, end_object, end_json] )} ]. encode(Term) -> encode(Term, []). encode(Term, Opts) -> try (parser(jsx, [], Opts))(Term) catch error:badarg -> {error, badarg} end. encode_test_() -> [ {"naked string", ?_assertEqual( encode([{string, <<"a string\n">>}, end_json]), [{string, <<"a string\n">>}, end_json] )}, {"naked integer - simple rep", ?_assertEqual( encode([123, end_json]), [{integer, 123}, end_json] )}, {"naked integer - alt rep", ?_assertEqual( encode([{number, 123}, end_json]), [{integer, 123}, end_json] )}, {"naked integer - full rep", ?_assertEqual( encode([{integer, 123}, end_json]), [{integer, 123}, end_json] )}, {"naked float - simple rep", ?_assertEqual( encode([1.23, end_json]), [{float, 1.23}, end_json] )}, {"naked float - alt rep", ?_assertEqual( encode([{number, 1.23}, end_json]), [{float, 1.23}, end_json] )}, {"naked float - full rep", ?_assertEqual( encode([{float, 1.23}, end_json]), [{float, 1.23}, end_json] )}, {"naked literal - simple rep", ?_assertEqual( encode([null, end_json]), [{literal, null}, end_json] )}, {"naked literal - full rep", ?_assertEqual( encode([{literal, null}, end_json]), [{literal, null}, end_json] )}, {"empty object", ?_assertEqual( encode([start_object, end_object, end_json]), [start_object, end_object, end_json] )}, {"empty list", ?_assertEqual( encode([start_array, end_array, end_json]), [start_array, end_array, end_json] )}, {"simple list", ?_assertEqual( encode([ start_array, {integer, 1}, {integer, 2}, {integer, 3}, {literal, true}, {literal, false}, end_array, end_json ]), [ start_array, {integer, 1}, {integer, 2}, {integer, 3}, {literal, true}, {literal, false}, end_array, end_json ] ) }, {"simple object", ?_assertEqual( encode([ start_object, {key, <<"a">>}, {literal, true}, {key, <<"b">>}, {literal, false}, end_object, end_json ]), [ start_object, {key, <<"a">>}, {literal, true}, {key, <<"b">>}, {literal, false}, end_object, end_json ] ) }, {"complex term", ?_assertEqual( encode([ start_object, {key, <<"a">>}, {literal, true}, {key, <<"b">>}, {literal, false}, {key, <<"c">>}, start_array, {integer, 1}, {integer, 2}, {integer, 3}, end_array, {key, <<"d">>}, start_object, {key, <<"key">>}, {string, <<"value">>}, end_object, end_object, end_json ]), [ start_object, {key, <<"a">>}, {literal, true}, {key, <<"b">>}, {literal, false}, {key, <<"c">>}, start_array, {integer, 1}, {integer, 2}, {integer, 3}, end_array, {key, <<"d">>}, start_object, {key, <<"key">>}, {string, <<"value">>}, end_object, end_object, end_json ] ) }, {"atom keys", ?_assertEqual( encode([start_object, {key, key}, {string, <<"value">>}, end_object, end_json]), [start_object, {key, <<"key">>}, {string, <<"value">>}, end_object, end_json] )} ]. encode_failures_test_() -> [ {"unwrapped values", ?_assertEqual( {error, badarg}, encode([{string, <<"a string\n">>}, {string, <<"a string\n">>}, end_json]) )}, {"unbalanced array", ?_assertEqual( {error, badarg}, encode([start_array, end_array, end_array, end_json]) )}, {"premature finish", ?_assertEqual( {error, badarg}, encode([start_object, {key, <<"key">>, start_array, end_json}]) )}, {"really premature finish", ?_assertEqual( {error, badarg}, encode([end_json]) )} ]. escapes_test_() -> [ {"backspace escape", ?_assertEqual(encode(<<"\b">>, [escaped_strings]), [{string, <<"\\b">>}, end_json])}, {"formfeed escape", ?_assertEqual(encode(<<"\f">>, [escaped_strings]), [{string, <<"\\f">>}, end_json])}, {"newline escape", ?_assertEqual(encode(<<"\n">>, [escaped_strings]), [{string, <<"\\n">>}, end_json])}, {"carriage return escape", ?_assertEqual(encode(<<"\r">>, [escaped_strings]), [{string, <<"\\r">>}, end_json])}, {"tab escape", ?_assertEqual(encode(<<"\t">>, [escaped_strings]), [{string, <<"\\t">>}, end_json])}, {"quote escape", ?_assertEqual(encode(<<"\"">>, [escaped_strings]), [{string, <<"\\\"">>}, end_json])}, {"single quote escape", ?_assertEqual(encode(<<"'">>, [escaped_strings, single_quoted_strings]), [{string, <<"\\'">>}, end_json])}, {"no single quote escape", ?_assertEqual(encode(<<"'">>, [escaped_strings]), [{string, <<"'">>}, end_json])}, {"forward slash escape", ?_assertEqual(encode(<<"/">>, [escaped_strings, escaped_forward_slashes]), [{string, <<"\\/">>}, end_json])}, {"no forward slash escape", ?_assertEqual(encode(<<"/">>, [escaped_strings]), [{string, <<"/">>}, end_json])}, {"back slash escape", ?_assertEqual(encode(<<"\\">>, [escaped_strings]), [{string, <<"\\\\">>}, end_json])}, {"jsonp escape", ?_assertEqual( encode(<<16#2028/utf8, 16#2029/utf8>>, [escaped_strings]), [{string, <<"\\u2028\\u2029">>}, end_json] )}, {"no jsonp escape", ?_assertEqual( encode(<<16#2028/utf8, 16#2029/utf8>>, [escaped_strings, unescaped_jsonp]), [{string, <<16#2028/utf8, 16#2029/utf8>>}, end_json] )}, {"control escape", ?_assertEqual(encode(<<0>>, [escaped_strings]), [{string, <<"\\u0000">>}, end_json])}, {"dirty strings", ?_assertEqual(encode(<<"\n">>, [escaped_strings, dirty_strings]), [{string, <<"\n">>}, end_json])}, {"ignore bad escapes", ?_assertEqual(encode(<<"\\x25">>, [escaped_strings, ignored_bad_escapes]), [{string, <<"\\\\x25">>}, end_json])} ]. surrogates_test_() -> [ {"surrogates - badarg", ?_assert(check_bad(surrogates())) }, {"surrogates - replaced", ?_assert(check_replaced(surrogates())) } ]. good_characters_test_() -> [ {"acceptable codepoints", ?_assert(check_good(good())) }, {"acceptable codepoints - escaped_strings", ?_assert(check_good(good(), [escaped_strings])) }, {"acceptable codepoints - replaced_bad_utf8", ?_assert(check_good(good(), [escaped_strings])) }, {"acceptable codepoints - escaped_strings + replaced_bad_utf8", ?_assert(check_good(good(), [escaped_strings, replaced_bad_utf8])) }, {"acceptable extended", ?_assert(check_good(good_extended())) }, {"acceptable extended - escaped_strings", ?_assert(check_good(good_extended(), [escaped_strings])) }, {"acceptable extended - escaped_strings", ?_assert(check_good(good_extended(), [replaced_bad_utf8])) } ]. reserved_test_() -> [ {"reserved noncharacters - badarg", ?_assert(check_bad(reserved_space())) }, {"reserved noncharacters - replaced", ?_assert(check_replaced(reserved_space())) } ]. noncharacters_test_() -> [ {"noncharacters - badarg", ?_assert(check_bad(noncharacters())) }, {"noncharacters - replaced", ?_assert(check_replaced(noncharacters())) } ]. extended_noncharacters_test_() -> [ {"extended noncharacters - badarg", ?_assert(check_bad(extended_noncharacters())) }, {"extended noncharacters - replaced", ?_assert(check_replaced(extended_noncharacters())) } ]. check_bad(List) -> [] == lists:dropwhile(fun({_, {error, badarg}}) -> true ; (_) -> false end, check(List, [], []) ). check_replaced(List) -> [] == lists:dropwhile(fun({_, [{string, <<16#fffd/utf8>>}|_]}) -> true ; (_) -> false end, check(List, [replaced_bad_utf8], []) ). check_good(List) -> check_good(List, []). check_good(List, Opts) -> [] == lists:dropwhile(fun({_, [{string, _}|_]}) -> true ; (_) -> false end, check(List, Opts, []) ). check([], _Opts, Acc) -> Acc; check([H|T], Opts, Acc) -> R = encode(to_fake_utf(H, utf8), Opts), check(T, Opts, [{H, R}] ++ Acc). noncharacters() -> lists:seq(16#fffe, 16#ffff). extended_noncharacters() -> [16#1fffe, 16#1ffff, 16#2fffe, 16#2ffff] ++ [16#3fffe, 16#3ffff, 16#4fffe, 16#4ffff] ++ [16#5fffe, 16#5ffff, 16#6fffe, 16#6ffff] ++ [16#7fffe, 16#7ffff, 16#8fffe, 16#8ffff] ++ [16#9fffe, 16#9ffff, 16#afffe, 16#affff] ++ [16#bfffe, 16#bffff, 16#cfffe, 16#cffff] ++ [16#dfffe, 16#dffff, 16#efffe, 16#effff] ++ [16#ffffe, 16#fffff, 16#10fffe, 16#10ffff]. surrogates() -> lists:seq(16#d800, 16#dfff). reserved_space() -> lists:seq(16#fdd0, 16#fdef). good() -> lists:seq(16#0000, 16#d7ff) ++ lists:seq(16#e000, 16#fdcf) ++ lists:seq(16#fdf0, 16#fffd). good_extended() -> [16#10000, 16#20000, 16#30000, 16#40000, 16#50000, 16#60000, 16#70000, 16#80000, 16#90000, 16#a0000, 16#b0000, 16#c0000, 16#d0000, 16#e0000, 16#f0000 ] ++ lists:seq(16#100000, 16#10fffd). %% erlang refuses to encode certain codepoints, so fake them all to_fake_utf(N, utf8) when N < 16#0080 -> <>; to_fake_utf(N, utf8) when N < 16#0800 -> <<0:5, Y:5, X:6>> = <>, <<2#110:3, Y:5, 2#10:2, X:6>>; to_fake_utf(N, utf8) when N < 16#10000 -> <> = <>, <<2#1110:4, Z:4, 2#10:2, Y:6, 2#10:2, X:6>>; to_fake_utf(N, utf8) -> <<0:3, W:3, Z:6, Y:6, X:6>> = <>, <<2#11110:5, W:3, 2#10:2, Z:6, 2#10:2, Y:6, 2#10:2, X:6>>. -endif.